Influence of tetrachloroethylene on the biota of aquatic systems: Toxicity to phyto- and zooplankton species in compartments of a natural pond

1984 ◽  
Vol 13 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Jan P. Lay ◽  
Wulfram Schauerte ◽  
Werner Klein ◽  
Friedhelm Korte
2021 ◽  
Author(s):  
Uriel Arreguin Rebolledo ◽  
Roberto Rico-Martínez ◽  
Rocío Fernández ◽  
Federico Páez-Osuna

Abstract Chloroquine (CQ) has been widely used for many years against malaria and various viral diseases. Its important use and high potential to being persistent make it of particular concern for ecotoxicological studies. Here, we evaluated the toxicity of CQ alone and in combination with copper (Cu) to the euryhaline rotifer Proales similis. All experiments were carried out using chronic toxicity reproductive five‐day tests and an application factor (AF) of 0.05, 0.1, 0.3 and 0.5 by multiplying the 24-h LC50 values of CQ (4250 µg/L) and Cu (68 µg/L). The rate of population increase (r, d-1) ranged from 0.50 to 52 (controls); 0.19 to 0.39 (CQ); 0.09 to 0.42 (Cu); and -0.03 to 0.29 (CQ-Cu) and decreased significantly as the concentration of both chemicals in the medium increased. Almost all tested mixtures induced synergistic effects, mainly as the AF increased. We found that the presence of Cu intensifies the vulnerability of organisms to CQ and vice versa. These results stress the potential hazard that these combined chemicals may have on the aquatic systems. This research suggests that P. similis is sensitive to CQ as other standardized zooplankton species and may serve as a potential test species in the risk assessment of emerging pollutants in marine environments.


2004 ◽  
Vol 33 (2) ◽  
pp. 559 ◽  
Author(s):  
Yiqiang Zhang ◽  
Zahir A. Zahir ◽  
William T. Frankenberger

Author(s):  
Dean Jacobsen ◽  
Olivier Dangles

Chapter 2 presents the amazing variety of running waters, lakes, ponds, and wetlands found at high altitudes. These waterbodies are not equally distributed among the world’s high altitude places, but tend to be concentrated in certain areas, primarily determined by regional climate and topography. Thus, a large proportion of the world’s truly high altitude aquatic systems are found at lower latitudes, mostly in the tropics. The chapter presents general patterns in the geographical distribution of high altitude waters, and gives examples of some of the most extreme systems. High altitude aquatic systems and habitats cover a broad variety in dynamics and physical appearance. These differences may be related to, for example, water source (glacier-fed, rain-fed, or groundwater-fed streams), geological origin (e.g. glacial, volcanic, or tectonic lakes), or catchment slope and altitude (different types of peatland wetlands). This is exemplified and richly illustrated through numerous photos.


2006 ◽  
Vol 567 (2) ◽  
pp. 152-159 ◽  
Author(s):  
André Henrique Rosa ◽  
Iramaia C. Bellin ◽  
Danielle Goveia ◽  
Luciana C. Oliveira ◽  
Roberto W. Lourenço ◽  
...  

Author(s):  
Chuan-Wang Yang ◽  
Li Yuan ◽  
Hong-Zhi Zhou ◽  
Xin Zhang ◽  
Guo-Ping Sheng

Natural organic matter (NOM) can adsorb onto engineered nanoparticles (ENPs) and form NOM-corona on ENPs-solution interface, thus affecting the performance and ecotoxicity of ENPs in aquatic systems. Nevertheless, the formation...


2015 ◽  
Vol 23 (4) ◽  
pp. 443-460 ◽  
Author(s):  
Michael J. Lawrence ◽  
Holly L.J. Stemberger ◽  
Aaron J. Zolderdo ◽  
Daniel P. Struthers ◽  
Steven J. Cooke

War is an ever-present force that has the potential to alter the biosphere. Here we review the potential consequences of modern war and military activities on ecosystem structure and function. We focus on the effects of direct conflict, nuclear weapons, military training, and military produced contaminants. Overall, the aforementioned activities were found to have overwhelmingly negative effects on ecosystem structure and function. Dramatic habitat alteration, environmental pollution, and disturbance contributed to population declines and biodiversity losses arising from both acute and chronic effects in both terrestrial and aquatic systems. In some instances, even in the face of massive alterations to ecosystem structure, recovery was possible. Interestingly, military activity was beneficial under specific conditions, such as when an exclusion zone was generated that generally resulted in population increases and (or) population recovery; an observation noted in both terrestrial and aquatic systems. Additionally, military technological advances (e.g., GPS technology, drone technology, biotelemetry) have provided conservation scientists with novel tools for research. Because of the challenges associated with conducting research in areas with military activities (e.g., restricted access, hazardous conditions), information pertaining to military impacts on the environment are relatively scarce and are often studied years after military activities have ceased and with no knowledge of baseline conditions. Additional research would help to elucidate the environmental consequences (positive and negative) and thus reveal opportunities for mitigating negative effects while informing the development of optimal strategies for rehabilitation and recovery.


Sign in / Sign up

Export Citation Format

Share Document