Asymptotics of solutions of a time-periodic boundary-value problem for a singularly perturbed nonlinear parabolic equation with rapidly oscillating coefficients

1984 ◽  
Vol 36 (2) ◽  
pp. 148-154
Author(s):  
A. G. Laver ◽  
N. R. Sidenko
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shun Uchida

<p style='text-indent:20px;'>In this paper, we consider a doubly nonlinear parabolic equation <inline-formula><tex-math id="M2">\begin{document}$ \partial _t \beta (u) - \nabla \cdot \alpha (x , \nabla u) \ni f $\end{document}</tex-math></inline-formula> with the homogeneous Dirichlet boundary condition in a bounded domain, where <inline-formula><tex-math id="M3">\begin{document}$ \beta : \mathbb{R} \to 2 ^{ \mathbb{R} } $\end{document}</tex-math></inline-formula> is a maximal monotone graph satisfying <inline-formula><tex-math id="M4">\begin{document}$ 0 \in \beta (0) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \nabla \cdot \alpha (x , \nabla u ) $\end{document}</tex-math></inline-formula> stands for a generalized <inline-formula><tex-math id="M6">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian. Existence of solution to the initial boundary value problem of this equation has been studied in an enormous number of papers for the case where single-valuedness, coerciveness, or some growth condition is imposed on <inline-formula><tex-math id="M7">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>. However, there are a few results for the case where such assumptions are removed and it is difficult to construct an abstract theory which covers the case for <inline-formula><tex-math id="M8">\begin{document}$ 1 &lt; p &lt; 2 $\end{document}</tex-math></inline-formula>. Main purpose of this paper is to show the solvability of the initial boundary value problem for any <inline-formula><tex-math id="M9">\begin{document}$ p \in (1, \infty ) $\end{document}</tex-math></inline-formula> without any conditions for <inline-formula><tex-math id="M10">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> except <inline-formula><tex-math id="M11">\begin{document}$ 0 \in \beta (0) $\end{document}</tex-math></inline-formula>. We also discuss the uniqueness of solution by using properties of entropy solution.</p>


Sign in / Sign up

Export Citation Format

Share Document