On expansion in eigenfunctions of a self-adjoint operator generated by a differential expression and pseudodifferential boundary conditions

1970 ◽  
Vol 21 (6) ◽  
pp. 708-710
Author(s):  
S. O. Rushchitskaya
Author(s):  
B. J. Harris

SynopsisWe provide estimates of the formfor the length of gap centre μ in the essential spectrum of a self-adjoint operator generated by a matrix differential expression.


Author(s):  
B. J. Harris

SynopsisWe consider ihe differential expression M[y]: = −y″ + qy on [0, ∞) where q_∈ Lp [0, ∞) for some p ≧ 1. It is known that M, together with the boundary conditions y(0) = 0 or y′(0) = 0, defines linear operators on L2 [0, ∞). We obtain lower bounds for the spectra of these operators. Our bounds depend on the Lp norm of q_ and extend results of Everitt and Veling.


Author(s):  
Yurii B. Orochko

For an unbounded self-adjoint operator A in a separable Hilbert space ℌ and scalar real-valued functions a(t), q(t), r(t), t ∊ ℝ, consider the differential expressionacting on ℌ-valued functions f(t), t ∊ ℝ, and degenerating at t = 0. Let Sp denotethe corresponding minimal symmetric operator in the Hilbert space (ℝ) of ℌ-valued functions f(t) with ℌ-norm ∥f(t)∥ square integrable on the line. The infiniteness of the deficiency indices of Sp, 1/2 < p < 3/2, is proved under natural restrictions on a(t), r(t), q(t). The conditions implying their equality to 0 for p ≥ 3/2 are given. In the case of a self-adjoint differential operator A acting in ℌ = L2(ℝn), the first of these results implies examples of symmetric degenerate differential operators with infinite deficiency indices in L2(ℝm), m = n + 1.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Nihal Yokuş

We consider the operator generated in by the differential expression , and the boundary condition , where is a complex-valued function and , with . In this paper we obtain the properties of the principal functions corresponding to the spectral singularities of .


Author(s):  
Aalt Dijksma

SynopsisIn provided with a J-innerproduct we characterize the J-selfadjoint operators generated by a symmetric ordinary differential expression on an open real interval ι. For a subclass of these operators we prove eigenfunction expansion results using Hilbertspace-techniques.


2021 ◽  
Vol 41 (6) ◽  
pp. 805-841
Author(s):  
Minsung Cho ◽  
Seth Hoisington ◽  
Roger Nichols ◽  
Brian Udall

We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.


Sign in / Sign up

Export Citation Format

Share Document