New glassy liquid crystals for optical data-storage applications

1995 ◽  
Vol 61 (1) ◽  
pp. 59-62 ◽  
Author(s):  
H. J. Eichler ◽  
R. Elschner ◽  
G. Heppke ◽  
R. Macdonald ◽  
H. Schmid
2007 ◽  
Vol 36 (12) ◽  
pp. 1868 ◽  
Author(s):  
Avtar S. Matharu ◽  
Shehzad Jeeva ◽  
P. S. Ramanujam

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 857
Author(s):  
Tang Xin Ting ◽  
Mohd Sani Sarjadi ◽  
Md Lutfor Rahman

Azo-functionalized materials are one of the appealing groups of the functionalized materials owing to their photoswitching behaviour and have been explored for various potential applications viz., optical data storage, sensor, display devices, nonlinear materials and molecular switches. Recently, azo-functionalized bent-core liquid crystals (BCLCs) have gained significant attention because they have dual properties of BCLCs and azobenzene, which enables to generate new multifaceted functional and smart materials. In this report, the recently synthesized azobenzene containing bent-core mesogens and its subclass, the so-called hockey stick and V-shaped molecules are summarized. The mesomorphic behaviour of reported BCLCs affected by the type of central core unit, the nature, number and position of the lateral substituents and the type and length of the terminal chain are discussed. The photoisomerization process of these photoresponsive BCLCs in solid, solution and mesophase, as well as the impact of light on the chemical and electrical properties of them, are discussed.


ChemInform ◽  
2008 ◽  
Vol 39 (8) ◽  
Author(s):  
Avtar S. Matharu ◽  
Shehzad Jeeva ◽  
P. S. Ramanujam

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Mihai ◽  
F. Sava ◽  
I. D. Simandan ◽  
A. C. Galca ◽  
I. Burducea ◽  
...  

AbstractThe lack of order in amorphous chalcogenides offers them novel properties but also adds increased challenges in the discovery and design of advanced functional materials. The amorphous compositions in the Si–Ge–Te system are of interest for many applications such as optical data storage, optical sensors and Ovonic threshold switches. But an extended exploration of this system is still missing. In this study, magnetron co-sputtering is used for the combinatorial synthesis of thin film libraries, outside the glass formation domain. Compositional, structural and optical properties are investigated and discussed in the framework of topological constraint theory. The materials in the library are classified as stressed-rigid amorphous networks. The bandgap is heavily influenced by the Te content while the near-IR refractive index dependence on Ge concentration shows a minimum, which could be exploited in applications. A transition from a disordered to a more ordered amorphous network at 60 at% Te, is observed. The thermal stability study shows that the formed crystalline phases are dictated by the concentration of Ge and Te. New amorphous compositions in the Si–Ge–Te system were found and their properties explored, thus enabling an informed and rapid material selection and design for applications.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 818
Author(s):  
Xuehua Zhang ◽  
Qian Wang ◽  
Shun Liu ◽  
Wei Zhang ◽  
Fangren Hu ◽  
...  

GeO2/organically modified silane (ormosils) organic-inorganic composite films containing azobenzene were prepared by combining sol-gel technology and spin coating method. Optical waveguide properties including the refractive index and thickness of the composite films were characterized by using a prism coupling instrument. Surface morphology and photochemical properties of the composite films were investigated by atomic force microscope and Fourier transform infrared spectrometer. Results indicate that the composite films have smooth and neat surface, and excellent optical waveguide performance. Photo-isomerization properties of the composite films were studied by using a UV–Vis spectrophotometer. Optical switching performance of the composite films was also studied under the alternating exposure of 365 nm ultraviolet light and 410 nm visible light. Finally, strip waveguides and microlens arrays were built in the composite films through a UV soft imprint technique. Based on the above results, we believe that the prepared composite films are promising candidates for micro-nano optics and photonic applications, which would allow directly integrating the optical data storage and optical switching devices onto a single chip.


Sign in / Sign up

Export Citation Format

Share Document