display devices
Recently Published Documents


TOTAL DOCUMENTS

925
(FIVE YEARS 139)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Mengjiao Yi ◽  
Ping Qi ◽  
Qi Fan ◽  
Jingcheng Hao

Circularly polarized luminescence (CPL)-active ionic liquid crystalline (ILC) featuring excitation wavelength-dependent (Ex-De) photoluminescence have latent application prospects in display devices. In addition, materials with tunable CPL responses are quite attractive...


Soft Matter ◽  
2022 ◽  
Author(s):  
Wentao Ma ◽  
Bo Li ◽  
Lei Jiang ◽  
Ya Sun ◽  
Yehui Wu ◽  
...  

Structural coloration in biomimetic nanostructures has remarkable application potentials in vivid display devices, but its color change effect is still insufficiently competitive towards biology. Inspired by the feather color change...


Author(s):  
Seung-Wan Choi ◽  
Hyun-Min Kim ◽  
Suk-Young Yoon ◽  
Dae-Yeon Jo ◽  
Sun-Kyo Kim ◽  
...  

Thanks to the synthetic maturity and environmental benignity of indium phosphide (InP) quantum dots (QDs), they have acquired a dominant position as efficient, sustainable visible emitters for next-generation display devices....


2021 ◽  
Vol 12 (1) ◽  
pp. 293
Author(s):  
Rafał Kukołowicz ◽  
Maksymilian Chlipala ◽  
Juan Martinez-Carranza ◽  
Moncy Sajeev Idicula ◽  
Tomasz Kozacki

Near-eye holographic displays are the holy grail of wear-on 3D display devices because they are intended to project realistic wide-angle virtual scenes with parameters matching human vision. One of the key features of a realistic perspective is the ability to move freely around the virtual scene. This can be achieved by addressing the display with wide-angle computer-generated holograms (CGHs) that enable continuous viewpoint change. However, to the best of our knowledge there is no technique able to generate these types of content. Thus, in this work we propose an accurate and non-paraxial hologram update method for wide-angle CGHs that supports continuous viewpoint change around the scene. This method is based on the assumption that with a small change in perspective, two consecutive holograms share overlapping data. This enables reusing the corresponding part of the information from the previous view, eliminating the need to generate an entirely new hologram. Holographic information for the next viewpoint is calculated in two steps: first, a tool approximating the Angular Spectrum Propagation is proposed to generate the hologram data from previous viewpoint; and second, the efficient Phase Added Stereogram algorithm is utilized for generating the missing hologram content. This methodology offers fast and accurate calculations at the same time. Numerical and optical experiments are carried out to support the results of the proposed method.


2021 ◽  
Author(s):  
Ghfoor Muhammad ◽  
Imran Murtaza ◽  
Rehan Abid ◽  
Naeem Ahmad

Abstract Herein, we explore the photoluminescence properties of zinc silicate (Zn2SiO4) nanostructures synthesized by vapor-liquid-solid (VLS) mode of growth using three different catalysts (Sn, Ag and Mn). Different catalysts significantly influence the growth rate which in turn has an impact on the structure and hence the photoluminescence of the prepared zinc silicate nanostructures. Zn2SiO4 has a wide bandgap of about 5.5 eV and in its pure form, it does not emit in visible region due to its inner shell electronic transitions between the 3d5 energy levels. However, the incorporation of different catalysts (Sn, Ag and Mn) at different growth temperatures into the Zn2SiO4 crystal growth kinetics provides wide visible spectral range of photoluminescence (PL) emissions. PL analysis shows broad multi-band spectrum in the visible region and distinct colours (red, yellow, green, blue, cyan and violet) are obtained depending on the crystalline structure of the prepared nanostructures. The allowed transitions due to the effect of different catalysts on zinc silicate lattice offer a huge cross-section of absorption that generates strong photoluminescence. The correlation between the structural and optical properties of the synthesized nanostructures is discussed in detail. The synthesized photoluminescent nanostructures have potential applications in solid-state lighting and display devices.


Author(s):  
Yan Wang ◽  
Dongyu Zhang ◽  
Qiang Gao

Abstract Flexible organic light-emitting diodes (OLEDs) are expected to have excellent device performance and mechanical robustness in many areas, such as wearable electronics and display devices. For the traditional materials of OLED anode, ITO is undoubtedly the most mature transparent conductive electrode available. However, the brittle and rigid nature of ITO severely limit the development of flexible OLED. In this work, a solution blending film consisting of poly (3,4 ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) and poly (ethylene oxide) (PEO) was used as a hybrid hole injection layer, where PEO polymer in the composite films can greatly improve the bending resistance of device. The printed flexible OLEDs doped with PEO exhibit impressive mechanical durability, maintaining 80.4% of its maximum external quantum efficiency after 1000 bends at a radius of curvature of 10 mm, compared to 46.3% for the counterpart without PEO doping.


Author(s):  
Manish M

Abstract: Once John Lubbock rightfully propounded, “What we see depends mainly on what we look for”. Perfection is a just a illusion whereas Perception is the real vision. This “illusion” is based on inertia of human eye. Propeller clock is a special kind of circular LED display. It is making use of POV, a scientific phenomena termed as ‘Persistence of Vision’, which means that if something appears in the same spot consistently, at least 50-60 times per second, our brains think that it’s permanently there when it is not. The term ‘Persistence of Vision display’ or ‘POV display’ has been used for LED display devices that compose images by displaying one spatial portion at a time in rapid succession (for example, one column of pixels every few milliseconds). A two-dimensional POV display is often accomplished by means of rapidly moving a single row of LEDs along a linear or circular path. The effect is that the image is perceived as a whole by the viewer as long as the entire path is completed during the visual persistence time of the human eye. A further effect is often to give the illusion of the image floating in mid-air. This implementation will be a coordination of electrical, electronics and mechanical engineering. Keywords: Persistence of Vision, Arduino Nano, Micro-controller, Led’s, Propeller, POV


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3107
Author(s):  
Elena-Luiza Epure ◽  
Iuliana Stoica ◽  
Raluca Marinica Albu ◽  
Camelia Hulubei ◽  
Andreea Irina Barzic

The operability of liquid crystal displays is strongly impacted by the orientation aspects of nematics, which in turn are affected by the alignment layer surface features. In this work, two polyimide (PI) structures are obtained based on a cycloaliphatic dianhydride and aromatic or aliphatic diamines with distinct flexibility. The attained PI films have high transmittance (T) for visible radiations, i.e., at 550 nm T > 80%. Here, a novel strategy for creating surface anisotropy in the samples that combines rubbing with a cloth and stretching via pressing is reported. Birefringence and atomic force microscopy (AFM) scans reveal that the generated orientation of the chains is affected by the chemical structure of the polymer and order of the steps involved in the surface treatment. Molecular modeling computations and wettability tests show that the PI structure and produced surface topography are competitive factors, which are impacting the intensity of the interactions with the nematic liquid crystals. The achieved results are of great relevance for designing of reliable display devices with improved uniform orientation of liquid crystals.


Sign in / Sign up

Export Citation Format

Share Document