Magnetic properties of a molecule in non-uniform magnetic field

1993 ◽  
Vol 87 (1-2) ◽  
pp. 59-73 ◽  
Author(s):  
P. Lazzeretti

The Wentzel-Kramers-Brillouin method is used to solve the Schrödinger equation for an electron moving in a uniform magnetic field H , the boundary of the system being a cylinder with its axis lying along the direction of the field. It is found that there are two entirely different types of wave-function possible, one type leading to the small Landau diamagnetism of large systems discussed in part I of this series, the other to the larger diamagnetism of small systems discussed in part IV. Taking into account the occupied states of both types, the steady (non-periodic) contributions to the magnetic susceptibility are derived for all fields in both the low- and high-temperature limits, and for most fields at intermediate temperatures.



2019 ◽  
Vol 33 (06) ◽  
pp. 1950026
Author(s):  
Yushan Li ◽  
Hongyan Liu

Magnetic properties of harmonically trapped charged ideal spin-1/2 fermions in a uniform magnetic field are studied. It is shown that the magnetism of charged spin-1/2 fermions can be explained by a competition between the diamagnetic and paramagnetic effects, where a variable spin factor is introduced to describe the strength of paramagnetic effect. As the spin factor increases, a crossover from diamagnetic region to paramagnetic region appears. Moreover, the critical values of spin factor are obtained at low-temperature and under weak magnetic field, respectively. Spin-1/2 fermions display distinct magnetic behaviors from spinless case.





2017 ◽  
Vol 68 (9) ◽  
pp. 2162-2165 ◽  
Author(s):  
Katarzyna Bloch ◽  
Mihail Aurel Titu ◽  
Andrei Victor Sandu

The paper presents the results of structural and microstructural studies for the bulk Fe65Co10Y5B20 and Fe63Co10Y7B20 alloys. All the rods obtained by the injection casting method were fully amorphous. It was found on the basis of analysis of distribution of hyperfine field induction that the samples of Fe65Co10Y5B20 alloy are characterised with greater atomic packing density. Addition of Y to the bulk amorphous Fe65Co10Y5B20 alloy leads to the decrease of the average induction of hyperfine field value. In a strong magnetic field (i.e. greater than 0.4HC), during the magnetization process of the alloys, where irreversible processes take place, the core losses associated with magnetization and de-magnetization were investigated.



2008 ◽  
Vol 44 (2) ◽  
pp. 175-182 ◽  
Author(s):  
K. Zimmermann ◽  
V.A. Naletova ◽  
I. Zeidis ◽  
V.A. Turkov ◽  
D.A. Pelevina ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document