Determining the thermal power outputs of small high-temperature nuclear power plants

1976 ◽  
Vol 41 (6) ◽  
pp. 1076-1078
Author(s):  
A. I. El'tsov ◽  
A. K. Zabavin ◽  
Yu. A. Kotel'nikov ◽  
A. A. Labut ◽  
E. P. Larin ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Arnold Gad-Briggs ◽  
Emmanuel Osigwe ◽  
Pericles Pilidis ◽  
Theoklis Nikolaidis ◽  
Suresh Sampath ◽  
...  

Abstract Numerous studies are on-going on to understand the performance of generation IV (Gen IV) nuclear power plants (NPPs). The objective is to determine optimum operating conditions for efficiency and economic reasons in line with the goals of Gen IV. For Gen IV concepts such as the gas-cooled fast reactors (GFRs) and very-high temperature reactors (VHTRs), the choice of cycle configuration is influenced by component choices, the component configuration and the choice of coolant. The purpose of this paper to present and review current cycles being considered—the simple cycle recuperated (SCR) and the intercooled cycle recuperated (ICR). For both cycles, helium is considered as the coolant in a closed Brayton gas turbine configuration. Comparisons are made for design point (DP) and off-design point (ODP) analyses to emphasize the pros and cons of each cycle. This paper also discusses potential future trends, include higher reactor core outlet temperatures (COT) in excess of 1000 °C and the simplified cycle configurations.





Author(s):  
Hitoshi Ohata ◽  
Toshikazu Nishibata ◽  
Tetsuya Onose

Reactor thermal power uprate (Power uprate) of operating light water reactors has long successful experiences in many nuclear power plants in the United States of America and European countries since late 1970’s. And it will be also introduced in Japan soon. This paper mainly describes the outline of the attempt of five-percent reactor thermal power uprate of Tokai No.2 Nuclear Power Station (Tokai-2) operated by the Japan Atomic Power Company (JAPC). It will be the leading case in Japan. Tokai-2 is GE type Boiling Water Reactor (BWR) of 1100 MW licensed electric power output and it commenced commercial operation in November 28, 1978. Power uprate is an effective approach for increasing electric power output. And it is recognized as one of the measures for effective and efficient use of existing Japanese operating nuclear power plants. It can contribute to inexpensive and stable electric power supply increase. Especially “Stretch Power Uprate (SPU)” requires only minor equipment modification or component replacement. It is also a countermeasure against global warming. Therefore it is a common theme to be accomplished in the near future for both Japanese electric power companies and government. JAPC started feasibility studies on power uprate in 2003. And in 2007, JAPC established a plan to achieve five-percent power uprate in Tokai-2 and announced this project to the public. This is a leading attempt in the Japanese electric power companies and it is the first case under the current Japanese regulatory requirements. In this plan, JAPC reflected lessons learned from preceding nuclear power plants in the United States and European countries, and tried to make most use of the performance of existing systems and components in Tokai-2 which have been periodically or timely renewed by utilizing more reliable and efficient design. JAPC plans to submit application documents to amend current License for Reactor Establishment Permit shortly. It will contain a complete set of revised safety analysis results based on the uprated reactor thermal power condition. Successful introduction of Tokai-2 power uprate will contribute to the establishment of regulatory process for power uprate in Japan and following attempts by other Japanese electric power companies.



1974 ◽  
Vol 9 (1) ◽  
pp. 188-195
Author(s):  
G. Bethlendy

Abstract Even with the latest technology, more than 60% of the heat produced by any thermal engine - whether the fuel is coal, oil, gas or uranium - must be taken back into the environment by cooling water or exhaust gas. For economical reasons, the usual means of disposing of the “waste” heat from a thermal-power plant is to pump river, lake or sea water through the parts of the plant concerned. Nuclear power plants use their heat as efficiently as older thermal plants, 30–33%. Modern thermal plants, however work with as high as 40% efficiency, and release about 10–13% of their total fuel-heat into the air through the stack. As a result of the combination of all these factors, nuclear power plants release about 68–70% of total input heat into the cooling water. In practice this means that the plant must be able to draw upon a source of cooling water which is large enough, which flows quickly or is cold enough not to be seriously effected by the return of warmed-up water from the power station. Where this is not possible, it may be necessary to build relatively expensive cooling ponds and/or towers so that the heat is also released to the air rather than only to a local body of water. The thermal effects could be detrimental or beneficial depending on the utilization of the water body. At the present time the utilities are aware of these problems and very extensive aquatic studies are being made before and after the construction of the plants. Some beneficial uses of waste heat are being sought via research and demonstration projects (e.g. in agriculture, aquaculture, district heating, etc.).



2013 ◽  
Vol 2013.49 (0) ◽  
pp. 87-88
Author(s):  
Yoshiki SATO ◽  
Akira IWABUCHI ◽  
Michimasa UCHIDATE ◽  
Hitoshi YASHIRO ◽  
Akito OYAKAMA ◽  
...  


Author(s):  
K. Bammert ◽  
E. Bohm

The present stage of development of nuclear power plants with helium turbine and high temperature reactor is reported and a description given of the first plant of this type, the Geesthacht KSH plant (Kernkraftwerk Schleswig-Holstein) in Germany. Particular stress is laid on the control of closed-cycle gas turbines. The special cases of reactor scram, shutdown of the turbine and load release as well as starting up and turning off of the plants are taken into consideration. The design of the turboset and the arrangement of the components of helium turbines of high output are described. Furthermore results of calculations for optimum layout of helium turbine plants with regard to simultaneous power and process heat generation are given.



2015 ◽  
Vol 1088 ◽  
pp. 169-173
Author(s):  
Guang Fu Li ◽  
Ke Wei Fang ◽  
Jun Xu

The effects of environmental factors on the electrochemical behaviors of the materials 52M and 316L taken from a dissimilar metal weld exposed to high temperature primary water of pressurized water reactor (PWR) nuclear power plants were studied experimentally, mainly on the effects of impurities chloride and sulfate in water, temperature and dissolved oxygen on the polarization curves, in order to provide fundamental data for relevant research and development. The results showed that doping chloride and sulfate into the water caused the rise of the tendency to pitting and general corrosion tendencies of both materials. With the rise of temperature from 160 °C to 290 °C, the tendencies to corrosion in anodic condition increased. The rise of the dissolved oxygen led to the rises of both the corrosion potentials and also the tendencies to corrosion.



Sign in / Sign up

Export Citation Format

Share Document