Atmospheric scattering indicatrix in the ultraviolet region of the spectrum

1984 ◽  
Vol 5 (1) ◽  
pp. 57-58
Author(s):  
V. E. Pavlov ◽  
L. M. Karimova
2016 ◽  
Vol 75 (17) ◽  
pp. 1527-1536
Author(s):  
G. B. Veselovska ◽  
G. I. Khlopov

2020 ◽  
Vol 2020 (1) ◽  
pp. 74-77
Author(s):  
Simone Bianco ◽  
Luigi Celona ◽  
Flavio Piccoli

In this work we propose a method for single image dehazing that exploits a physical model to recover the haze-free image by estimating the atmospheric scattering parameters. Cycle consistency is used to further improve the reconstruction quality of local structures and objects in the scene as well. Experimental results on four real and synthetic hazy image datasets show the effectiveness of the proposed method in terms of two commonly used full-reference image quality metrics.


2019 ◽  
Vol 31 (7) ◽  
pp. 1148 ◽  
Author(s):  
Xinnan Fan ◽  
Shuyue Ye ◽  
Pengfei Shi ◽  
Xuewu Zhang ◽  
Jinxiang Ma

2020 ◽  
Vol 4 (8) ◽  
Author(s):  
Saeideh Edalati-Boostan ◽  
Caterina Cocchi ◽  
Claudia Draxl
Keyword(s):  

Author(s):  
Linyong Xu ◽  
Wuxi Tao ◽  
Heng Liu ◽  
Junhua Ning ◽  
Meihua Huang ◽  
...  

A large-bandgap donor BTBR-2F based on noncovalent conformational lock has been designed and synthesized to achieve more complementary absorption with the PM6: Y6 blend in the near-ultraviolet region. The ternary...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kohei Shimanoe ◽  
Soshi Endo ◽  
Tetsuya Matsuyama ◽  
Kenji Wada ◽  
Koichi Okamoto

AbstractLocalized surface plasmon resonance (LSPR) was performed in the deep ultraviolet (UVC) region with Al nanohemisphere structures fabricated by means of a simple method using a combination of vapor deposition, sputtering, and thermal annealing without top-down nanofabrication technology such as electron beam lithography. The LSPR in the UV region was obtained and tuned by the initial metal film thickness, annealing temperature, and dielectric spacer layer thickness. Moreover, we achieved a flexible tuning of the LSPR in a much deeper UVC region below 200 nm using a nanohemisphere on a mirror (NHoM) structure. NHoM is a structure in which a metal nanohemisphere is formed on a metal substrate that is interposed with an Al2O3 thin film layer. In the experimental validation, Al and Ga were used for the metal hemispheres. The LSPR spectrum of the NHoM structures was split into two peaks, and the peak intensities were enhanced and sharpened. The shorter branch of the LSPR peak appeared in the UVC region below 200 nm. Both the peak intensities and linewidth were flexibly tuned by the spacer thickness. This structure can contribute to new developments in the field of deep UV plasmonics.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 40681-40694
Author(s):  
Tomasz Galaj ◽  
Filip Pietrusiak ◽  
Marek Galewski ◽  
Rafal Ledzion ◽  
Adam Wojciechowski

2021 ◽  
Vol 13 (11) ◽  
pp. 2124
Author(s):  
Kamila M. Harenda ◽  
Mateusz Samson ◽  
Radosław Juszczak ◽  
Krzysztof M. Markowicz ◽  
Iwona S. Stachlewska ◽  
...  

Peatlands play an important role in the global carbon cycle due to the high carbon storage in the substrate. Ecosystem production depends, for example, on the solar energy amount that reaches the vegetation, however the diffuse component of this flux can substantially increase ecosystem net productivity. This phenomenon is observed in different ecosystems, but the study of the atmosphere optical properties on peatland production is lacking. In this paper, the presented methodology allowed us to disentangle the diffuse radiation impact on the net ecosystem production (NEP) of Rzecin peatland, Poland. It allowed us to assess the impact of the atmospheric scattering process determined by the aerosol presence in the air mass. An application of atmospheric radiation transfer (ART) and ecosystem production (EP) models showed that the increase of aerosol optical thickness from 0.09 to 0.17 caused NEP to rise by 3.4–5.7%. An increase of the diffusion index (DI) by 0.1 resulted in an NEP increase of 6.1–42.3%, while a DI decrease of 0.1 determined an NEP reduction of −49.0 to −10.5%. These results show that low peatland vegetation responds to changes in light scattering. This phenomenon should be taken into account when calculating the global CO2 uptake estimation of such ecosystems.


Sign in / Sign up

Export Citation Format

Share Document