atmospheric scattering model
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Haoyang Li ◽  
Sining Li ◽  
Peng Jiang ◽  
Jianfeng Sun ◽  
Shihang Guo ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Runze Song ◽  
Zhaohui Liu ◽  
Chao Wang

As an advanced machine vision task, traffic sign recognition is of great significance to the safe driving of autonomous vehicles. Haze has seriously affected the performance of traffic sign recognition. This paper proposes a dehazing network, including multi-scale residual blocks, which significantly affects the recognition of traffic signs in hazy weather. First, we introduce the idea of residual learning, design the end-to-end multi-scale feature information fusion method. Secondly, the study used subjective visual effects and objective evaluation metrics such as Visibility Index (VI) and Realness Index (RI) based on the characteristics of the real-world environment to compare various traditional dehazing and deep learning dehazing method with good performance. Finally, this paper combines image dehazing and traffic sign recognition, using the algorithm of this paper to dehaze the traffic sign images under real-world hazy weather. The experiments show that the algorithm in this paper can improve the performance of traffic sign recognition in hazy weather and fulfil the requirements of real-time image processing. It also proves the effectiveness of the reformulated atmospheric scattering model for the dehazing of traffic sign images.


2021 ◽  
Vol 30 ◽  
pp. 2180-2192
Author(s):  
Mingye Ju ◽  
Can Ding ◽  
Wenqi Ren ◽  
Yi Yang ◽  
Dengyin Zhang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6311
Author(s):  
Eunjae Ha ◽  
Joongchol Shin ◽  
Joonki Paik

In a hazy environment, visibility is reduced and objects are difficult to identify. For this reason, many dehazing techniques have been proposed to remove the haze. Especially, in the case of the atmospheric scattering model estimation-based method, there is a problem of distortion when inaccurate models are estimated. We present a novel residual-based dehazing network model to overcome the performance limitation in an atmospheric scattering model-based method. More specifically, the proposed model adopted the gate fusion network that generates the dehazed results using a residual operator. To further reduce the divergence between the clean and dehazed images, the proposed discriminator distinguishes dehazed results and clean images, and then reduces the statistical difference via adversarial learning. To verify each element of the proposed model, we hierarchically performed the haze removal process in an ablation study. Experimental results show that the proposed method outperformed state-of-the-art approaches in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), international commission on illumination cie delta e 2000 (CIEDE2000), and mean squared error (MSE). It also gives subjectively high-quality images without color distortion or undesired artifacts for both synthetic and real-world hazy images.


Sign in / Sign up

Export Citation Format

Share Document