Recognition of base sequences by regulatory proteins in procaryotes and eucaryotes

1981 ◽  
Vol 1 (6) ◽  
pp. 477-483 ◽  
Author(s):  
Claude Hélène

A model is described whereby (i) regulatory proteins recognize one face of the DNA double helix on non-adjacent DNA regions brought close together in space through folding around nucleosomes, (if) regulatory sequences may occur inside gene structures, and (iii) the recognition of regulatory sequences might be modulated by short (4–6 base-pairs) insertions or deletions in introns or upstream from the transcription start site. This model might apply not only to eucaryotes but also to procaryotic organisms whose DNA is organized through interactions with histone-like proteins. Consequences of the model regarding the binding of regulatory proteins in procaryotes are suggested.

Blood ◽  
1991 ◽  
Vol 78 (6) ◽  
pp. 1589-1595
Author(s):  
L Romao ◽  
L Osorio-Almeida ◽  
DR Higgs ◽  
J Lavinha ◽  
SA Liebhaber

We describe an alpha-thalassemia determinant in which alpha-globin expression is silenced by a deletion located 27 kb 5′ to the transcription start site of the alpha 2-globin gene. This alpha- thalassemic determinant, (alpha alpha)MM, is a member of a newly described group of thalassemic mutations resulting from deletion of locus-controlling sequences critical to globin gene expression.


1990 ◽  
Vol 10 (10) ◽  
pp. 5187-5196 ◽  
Author(s):  
G W Both ◽  
L Taylor ◽  
J W Pollard ◽  
E J Steele

The mechanism of somatic hypermutation in the variable region of immunoglobulin genes expressed in mammalian B cells is a major unexplained phenomenon in the generation of diversity in the immune system. To evaluate possible mechanisms, the distribution of somatic mutations was examined for a group of five cloned, rearranged, somatically mutated VH genes generated in C57BL/6j mice. These mutated VH genes were sequenced and compared with their germ line counterparts from a point approximately 550 base pairs upstream of the transcription start site to an EcoRI site some 1,200 base pairs downstream of JH-4. The location of the transcription start (cap) sites was also precisely determined. Most (greater than or equal to 94%) of the 118 mutations scored occurred between the transcription start site and the distal end of JH-4. However, seven mutations occurred upstream of the transcribed region, and at least four were found downstream of JH-4. The target region for the mutator mechanism therefore clearly extends into the 3' nontranslated and 5' nontranscribed regions. Thus, models which propose the transcribed region of the DNA as the sole substrate for the mutation process are not ruled out but are inadequate to explain the upstream distribution of somatic mutations.


1990 ◽  
Vol 10 (10) ◽  
pp. 5187-5196
Author(s):  
G W Both ◽  
L Taylor ◽  
J W Pollard ◽  
E J Steele

The mechanism of somatic hypermutation in the variable region of immunoglobulin genes expressed in mammalian B cells is a major unexplained phenomenon in the generation of diversity in the immune system. To evaluate possible mechanisms, the distribution of somatic mutations was examined for a group of five cloned, rearranged, somatically mutated VH genes generated in C57BL/6j mice. These mutated VH genes were sequenced and compared with their germ line counterparts from a point approximately 550 base pairs upstream of the transcription start site to an EcoRI site some 1,200 base pairs downstream of JH-4. The location of the transcription start (cap) sites was also precisely determined. Most (greater than or equal to 94%) of the 118 mutations scored occurred between the transcription start site and the distal end of JH-4. However, seven mutations occurred upstream of the transcribed region, and at least four were found downstream of JH-4. The target region for the mutator mechanism therefore clearly extends into the 3' nontranslated and 5' nontranscribed regions. Thus, models which propose the transcribed region of the DNA as the sole substrate for the mutation process are not ruled out but are inadequate to explain the upstream distribution of somatic mutations.


2006 ◽  
Vol 19 (12) ◽  
pp. 1394-1405 ◽  
Author(s):  
Chia-Yi Shung ◽  
Janet Sunter ◽  
Shyam S. Sirasanagandla ◽  
Garry Sunter

Transient expression studies using Nicotiana benthamiana protoplasts and plants have identified sequences important for transcription of complementary sense RNAs derived from Tomato golden mosaic virus (TGMV) DNA component A that direct expression of AL2 and AL3. Transcription of two complementary sense RNAs, initiating at nucleotides 1,935 (AL1935) and 1,629 (AL1629), is directed by unique sequences located upstream of each transcription initiation site. One element is located between 28 and 124 nucleotides (nt) upstream of the AL1935 transcription start site, which differs from a second element located 150 nt downstream, between 129 and 184 nt upstream of the AL1629 transcription start site. Transcription initiation at nucleotide 1,935 is lower than that at nucleotide 1,629 as determined by run-on transcription assays, and the resulting transcript is only capable of expressing AL3. The transcript initiating at nucleotide 1,629 is capable of directing expression of both AL2 and AL3, although expression of AL3 is up to fourfold greater than that for AL2. Nuclear factors purified from tobacco suspension cells bind to sequences upstream of both AL1935 and AL1629, correlating with the ability of these sequences to direct gene expression. Thus, in tobacco, regulatory sequences direct transcription of two unique TGMV messenger RNAs that differentially express AL2 and AL3.


Blood ◽  
1991 ◽  
Vol 78 (6) ◽  
pp. 1589-1595 ◽  
Author(s):  
L Romao ◽  
L Osorio-Almeida ◽  
DR Higgs ◽  
J Lavinha ◽  
SA Liebhaber

Abstract We describe an alpha-thalassemia determinant in which alpha-globin expression is silenced by a deletion located 27 kb 5′ to the transcription start site of the alpha 2-globin gene. This alpha- thalassemic determinant, (alpha alpha)MM, is a member of a newly described group of thalassemic mutations resulting from deletion of locus-controlling sequences critical to globin gene expression.


2021 ◽  
pp. 166813
Author(s):  
Eric J. Tomko ◽  
Olivia Luyties ◽  
Jenna K. Rimel ◽  
Chi-Lin Tsai ◽  
Jill O. Fuss ◽  
...  

2016 ◽  
Vol 113 (21) ◽  
pp. E2899-E2905 ◽  
Author(s):  
Irina O. Vvedenskaya ◽  
Hanif Vahedian-Movahed ◽  
Yuanchao Zhang ◽  
Deanne M. Taylor ◽  
Richard H. Ebright ◽  
...  

During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein–DNA interactions with the downstream part of the nontemplate strand of the transcription bubble (“core recognition element,” CRE). Here, we investigated whether sequence-specific RNAP–CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP–CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP–CRE interactions on TSS selection in vitro and in vivo for a library of 47 (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP–CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5′ merodiploid native-elongating-transcript sequencing, 5′ mNET-seq, we assessed effects of RNAP–CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP–CRE interactions determine TSS selection. Our findings establish RNAP–CRE interactions are a functional determinant of TSS selection. We propose that RNAP–CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).


Sign in / Sign up

Export Citation Format

Share Document