Theoretical studies on capillary microviscometry of skeletal muscle actin

1983 ◽  
Vol 3 (2) ◽  
pp. 195-206
Author(s):  
Mitsuhiko Masuhara ◽  
Hiroyuki Yokoyama ◽  
Noriyuki Tatsumi

For improving Ostwald's viscometry, which is time-consuming and requires a relatively large volume of specimen to determine viscosity, we developed a capillary microviscometric method with an appropriate mathematical model, and have compared this method with Ostwald's method.

1985 ◽  
Vol 45 (3) ◽  
pp. 819-824 ◽  
Author(s):  
David H. Small ◽  
Richard J. Wurtman
Keyword(s):  

FEBS Open Bio ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 130-134 ◽  
Author(s):  
Tomoko Nashida ◽  
Sumio Yoshie ◽  
Maiko Haga-Tsujimura ◽  
Akane Imai ◽  
Hiromi Shimomura

Development ◽  
1985 ◽  
Vol 89 (Supplement) ◽  
pp. 125-136
Author(s):  
J. B. Gurdon ◽  
T. J. Mohun ◽  
S. Brennan ◽  
S. Cascio

The results summarized here have established the temporal and regional activation of three kinds of Xenopus actin genes. The cardiac and skeletal muscle actin genes are among the first cell-type-specific genes to be expressed in early development. The first transcripts to be synthesized by these genes appear to be correctly initiated, spliced, and at once translated into proteins. Both cardiac and skeletal actin genes are strongly transcribed in the axial skeletal muscle of embryos. The mechanism by which the cardiac actin gene is first transcribed in only the somite region of an embryo depends, at least in part, on materials already localized in the subequatorial region of a fertilized but uncleaved egg. Cells which acquire this material seem able to activate their cardiac actin genes without requiring normal contact with other cells.


1996 ◽  
Vol 13 (3) ◽  
pp. 371-375 ◽  
Author(s):  
Yasuhiro Kurasawa ◽  
Yoshio Watanabe ◽  
Osamu Numata

1979 ◽  
Author(s):  
M. Hauck ◽  
L. Muszbek

It has been demonstrated that thrombin can split skeletal muscle actin (Muszbek and Laki, PNAS 1974,71,2208). In the present paper the effect of thrombin-like snake venom proteases (Ancrod and Batroxobins of Bothrops moojeni and Bothrops marajoensis) on actin was studied and compared to the thrombic cleavage of this protein. Only EDTA pretreated G and F actin were split by Ancrod, while, Batroxobins hydrolized native G actin, too. The time course of digestion was followed by SDS PAGE. A split product of 37500 m.w. appeared first which was cleaved further resulting in three lower m.w. fragments. The SDS gel pattern of thrombic fragmentation was well distinguishable from those caused by Ancrod and Batroxobins. The first split products of Batroxobin digestion were isolated and by estimating their N-, and C-terminal end groups and amino acid compositions the peptide bond hydrolyzed first was located in the primary structure of actin. It was established that while thrombin split off two actinopeptides (at Arg ( 28)-Ala(29) and Arg ( 39)-His ( 40) from the N-terminal end of the molecule only Arg ( 39)-His ( 40) was cleaved by Batroxobins.


1983 ◽  
Vol 2 (11) ◽  
pp. 1977-1979 ◽  
Author(s):  
H. Czosnek ◽  
U. Nudel ◽  
Y. Mayer ◽  
P.E. Barker ◽  
D.D. Pravtcheva ◽  
...  

1987 ◽  
Vol 253 (6) ◽  
pp. H1548-H1556
Author(s):  
J. Lee ◽  
E. P. Salathe ◽  
G. W. Schmid-Schonbein

A mathematical model of capillary-tissue fluid exchange in a viscoelastic blood vessel is presented, and the Landis occlusion experiment is simulated. The model assumes that the fluid exchange is governed by Starling's law and that the protein and red blood cells are conserved in the capillary. Before occlusion, in the steady flow state, the pressure in the capillary decreases from the arterial to venous end due to viscous dissipation. After occlusion a constant pressure is established along the capillary. We assume the capillary to be distensible with viscoelastic wall properties. Immediately following occlusion an instantaneous distension of the capillary occurs. The vessel continues to expand viscoelastically while fluid is filtered for a period of several minutes, until it reaches an equilibrium state. A full numerical solution of the governing equations has been obtained. We use this model to compute the distance variation between two labeled erythrocytes as obtained in the Landis occlusion experiment and compare the results with experimental data obtained recently for the spinotrapezius muscle in our laboratory. The new model can fit the experimental data better than previous models that neglect the distensibility of the capillaries.


2020 ◽  
Vol 134 ◽  
pp. 103747
Author(s):  
Marco Stefanati ◽  
Chiara Villa ◽  
Yvan Torrente ◽  
José Félix Rodriguez Matas

Sign in / Sign up

Export Citation Format

Share Document