scholarly journals Enumeration of lattice paths and generating functions for skew plane partitions

1989 ◽  
Vol 63 (2) ◽  
pp. 129-155 ◽  
Author(s):  
Christian Krattenthaler

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Shuhei Kamioka

International audience A new triple product formulae for plane partitions with bounded size of parts is derived from a combinato- rial interpretation of biorthogonal polynomials in terms of lattice paths. Biorthogonal polynomials which generalize the little q-Laguerre polynomials are introduced to derive a new triple product formula which recovers the classical generating function in a triple product by MacMahon and generalizes the trace-type generating functions in double products by Stanley and Gansner.



10.37236/156 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
M. Kuba ◽  
A. Panholzer ◽  
H. Prodinger

In this work we consider weighted lattice paths in the quarter plane ${\Bbb N}_0\times{\Bbb N}_0$. The steps are given by $(m,n)\to(m-1,n)$, $(m,n)\to(m,n-1)$ and are weighted as follows: $(m,n)\to(m-1,n)$ by $m/(m+n)$ and step $(m,n)\to(m,n-1)$ by $n/(m+n)$. The considered lattice paths are absorbed at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$. We provide explicit formulæ for the sum of the weights of paths, starting at $(m,n)$, which are absorbed at a certain height $k$ at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$, using a generating functions approach. Furthermore these weighted lattice paths can be interpreted as probability distributions arising in the context of Pólya-Eggenberger urn models, more precisely, the lattice paths are sample paths of the well known sampling without replacement urn. We provide limiting distribution results for the underlying random variable, obtaining a total of five phase changes.



2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Sylvie Corteel ◽  
Jeremy Lovejoy ◽  
Olivier Mallet

International audience We investigate class of well-poised basic hypergeometric series $\tilde{J}_{k,i}(a;x;q)$, interpreting these series as generating functions for overpartitions defined by multiplicity conditions. We also show how to interpret the $\tilde{J}_{k,i}(a;1;q)$ as generating functions for overpartitions whose successive ranks are bounded, for overpartitions that are invariant under a certain class of conjugations, and for special restricted lattice paths. We highlight the cases $(a,q) \to (1/q,q)$, $(1/q,q^2)$, and $(0,q)$, where some of the functions $\tilde{J}_{k,i}(a;x;q)$ become infinite products. The latter case corresponds to Bressoud's family of Rogers-Ramanujan identities for even moduli.



10.37236/7375 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nicholas R. Beaton ◽  
Mathilde Bouvel ◽  
Veronica Guerrini ◽  
Simone Rinaldi

We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes, called slicings, which grow according to these succession rules. In passing, we also exhibit Schröder subclasses of Baxter classes, namely a Schröder subset of triples of non-intersecting lattice paths, a new Schröder subset of Baxter permutations, and a new Schröder subset of mosaic floorplans. Finally, we define two families of subclasses of Baxter slicings: the $m$-skinny slicings and the $m$-row-restricted slicings, for $m \in \mathbb{N}$. Using functional equations and the kernel method, their generating functions are computed in some special cases, and we conjecture that they are algebraic for any $m$.





10.37236/7799 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Veronika Irvine ◽  
Stephen Melczer ◽  
Frank Ruskey

Inspired by a new mathematical model for bobbin lace, this paper considers finite lattice paths formed from the set of step vectors $\mathfrak{A}=$$\{\rightarrow,$ $\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$ with the restriction that vertical steps $(\uparrow, \downarrow)$ cannot be consecutive. The set $\mathfrak{A}$ is the union of the well known Motzkin step vectors $\mathfrak{M}=$$\{\rightarrow,$ $\nearrow,$ $\searrow\}$ with the vertical steps $\{\uparrow, \downarrow\}$. An explicit bijection $\phi$ between the exhaustive set of vertically constrained paths formed from $\mathfrak{A}$ and a bisection of the paths generated by $\mathfrak{M}S$ is presented. In a similar manner, paths with the step vectors $\mathfrak{B}=$$\{\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$, the union of Dyck step vectors and constrained vertical steps, are examined.  We show, using the same $\phi$ mapping, that there is a bijection between vertically constrained $\mathfrak{B}$ paths and the subset of Motzkin paths avoiding horizontal steps at even indices.  Generating functions are derived to enumerate these vertically constrained, partially directed paths when restricted to the half and quarter-plane.  Finally, we extend Schröder and Delannoy step sets in a similar manner and find a bijection between these paths and a subset of Schröder paths that are smooth (do not change direction) at a regular horizontal interval.



10.37236/5579 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
D. Cook II ◽  
Uwe Nagel

It is well-known that plane partitions, lozenge tilings of a hexagon, perfect matchings on a honeycomb graph, and families of non-intersecting lattice paths in a hexagon are all in bijection. In this work we consider regions that are more general than hexagons. They are obtained by further removing upward-pointing triangles. We call the resulting shapes triangular regions. We establish signed versions of the latter three bijections for triangular regions. We first investigate the tileability of triangular regions by lozenges. Then we use perfect matchings and families of non-intersecting lattice paths to define two signs of a lozenge tiling. Using a new method that we call resolution of a puncture, we show that the two signs are in fact equivalent. As a consequence, we obtain the equality of determinants, up to sign, that enumerate signed perfect matchings and signed families of lattice paths of a triangular region, respectively. We also describe triangular regions, for which the signed enumerations agree with the unsigned enumerations.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Olivier Mallet

International audience We define two classes of multiple basic hypergeometric series $V_{k,t}(a,q)$ and $W_{k,t}(a,q)$ which generalize multiple series studied by Agarwal, Andrews, and Bressoud. We show how to interpret these series as generating functions for special restricted lattice paths and for $n$-color overpartitions with weighted difference conditions. We also point out that some specializations of our series can be written as infinite products, which leads to combinatorial identities linking $n$-color overpartitions with ordinary partitions or overpartitions. Nous définissons deux classes de séries hypergéométriques basiques multiples $V_{k,t}(a,q)$ et $W_{k,t}(a,q)$ qui généralisent des séries multiples étudiées par Agarwal, Andrews et Bressoud. Nous montrons comment interpréter ces séries comme les fonctions génératrices de chemins avec certaines restrictions et de surpartitions $n$-colorées vérifiant des conditions de différences pondérées. Nous remarquons aussi que certaines spécialisations de nos séries peuvent s'écrire comme des produits infinis, ce qui conduit à des identités combinatoires reliant les surpartitions $n$-colorées aux partitions ou surpartitions ordinaires.





Sign in / Sign up

Export Citation Format

Share Document