scholarly journals Vertically Constrained Motzkin-Like Paths Inspired by Bobbin Lace

10.37236/7799 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Veronika Irvine ◽  
Stephen Melczer ◽  
Frank Ruskey

Inspired by a new mathematical model for bobbin lace, this paper considers finite lattice paths formed from the set of step vectors $\mathfrak{A}=$$\{\rightarrow,$ $\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$ with the restriction that vertical steps $(\uparrow, \downarrow)$ cannot be consecutive. The set $\mathfrak{A}$ is the union of the well known Motzkin step vectors $\mathfrak{M}=$$\{\rightarrow,$ $\nearrow,$ $\searrow\}$ with the vertical steps $\{\uparrow, \downarrow\}$. An explicit bijection $\phi$ between the exhaustive set of vertically constrained paths formed from $\mathfrak{A}$ and a bisection of the paths generated by $\mathfrak{M}S$ is presented. In a similar manner, paths with the step vectors $\mathfrak{B}=$$\{\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$, the union of Dyck step vectors and constrained vertical steps, are examined.  We show, using the same $\phi$ mapping, that there is a bijection between vertically constrained $\mathfrak{B}$ paths and the subset of Motzkin paths avoiding horizontal steps at even indices.  Generating functions are derived to enumerate these vertically constrained, partially directed paths when restricted to the half and quarter-plane.  Finally, we extend Schröder and Delannoy step sets in a similar manner and find a bijection between these paths and a subset of Schröder paths that are smooth (do not change direction) at a regular horizontal interval.

10.37236/156 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
M. Kuba ◽  
A. Panholzer ◽  
H. Prodinger

In this work we consider weighted lattice paths in the quarter plane ${\Bbb N}_0\times{\Bbb N}_0$. The steps are given by $(m,n)\to(m-1,n)$, $(m,n)\to(m,n-1)$ and are weighted as follows: $(m,n)\to(m-1,n)$ by $m/(m+n)$ and step $(m,n)\to(m,n-1)$ by $n/(m+n)$. The considered lattice paths are absorbed at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$. We provide explicit formulæ for the sum of the weights of paths, starting at $(m,n)$, which are absorbed at a certain height $k$ at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$, using a generating functions approach. Furthermore these weighted lattice paths can be interpreted as probability distributions arising in the context of Pólya-Eggenberger urn models, more precisely, the lattice paths are sample paths of the well known sampling without replacement urn. We provide limiting distribution results for the underlying random variable, obtaining a total of five phase changes.


2009 ◽  
Vol 46 (04) ◽  
pp. 993-1004
Author(s):  
S. Ma ◽  
M. Molina

We introduce a class of discrete-time two-sex branching processes where the offspring probability distribution and the mating function are governed by an environmental process. It is assumed that the environmental process is formed by independent but not necessarily identically distributed random vectors. For such a class, we determine some relationships among the probability generating functions involved in the mathematical model and derive expressions for the main moments. Also, by considering different probabilistic approaches we establish several results concerning the extinction probability. A simulated example is presented as an illustration.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Sylvie Corteel ◽  
Jeremy Lovejoy ◽  
Olivier Mallet

International audience We investigate class of well-poised basic hypergeometric series $\tilde{J}_{k,i}(a;x;q)$, interpreting these series as generating functions for overpartitions defined by multiplicity conditions. We also show how to interpret the $\tilde{J}_{k,i}(a;1;q)$ as generating functions for overpartitions whose successive ranks are bounded, for overpartitions that are invariant under a certain class of conjugations, and for special restricted lattice paths. We highlight the cases $(a,q) \to (1/q,q)$, $(1/q,q^2)$, and $(0,q)$, where some of the functions $\tilde{J}_{k,i}(a;x;q)$ become infinite products. The latter case corresponds to Bressoud's family of Rogers-Ramanujan identities for even moduli.


10.37236/7375 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nicholas R. Beaton ◽  
Mathilde Bouvel ◽  
Veronica Guerrini ◽  
Simone Rinaldi

We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes, called slicings, which grow according to these succession rules. In passing, we also exhibit Schröder subclasses of Baxter classes, namely a Schröder subset of triples of non-intersecting lattice paths, a new Schröder subset of Baxter permutations, and a new Schröder subset of mosaic floorplans. Finally, we define two families of subclasses of Baxter slicings: the $m$-skinny slicings and the $m$-row-restricted slicings, for $m \in \mathbb{N}$. Using functional equations and the kernel method, their generating functions are computed in some special cases, and we conjecture that they are algebraic for any $m$.


Algorithmica ◽  
2019 ◽  
Vol 82 (3) ◽  
pp. 386-428 ◽  
Author(s):  
Andrei Asinowski ◽  
Axel Bacher ◽  
Cyril Banderier ◽  
Bernhard Gittenberger

Abstract In this article we develop a vectorial kernel method—a powerful method which solves in a unified framework all the problems related to the enumeration of words generated by a pushdown automaton. We apply it for the enumeration of lattice paths that avoid a fixed word (a pattern), or for counting the occurrences of a given pattern. We unify results from numerous articles concerning patterns like peaks, valleys, humps, etc., in Dyck and Motzkin paths. This refines the study by Banderier and Flajolet from 2002 on enumeration and asymptotics of lattice paths: we extend here their results to pattern-avoiding walks/bridges/meanders/excursions. We show that the autocorrelation polynomial of this forbidden pattern, as introduced by Guibas and Odlyzko in 1981 in the context of rational languages, still plays a crucial role for our algebraic languages. En passant, our results give the enumeration of some classes of self-avoiding walks, and prove several conjectures from the On-Line Encyclopedia of Integer Sequences. Finally, we also give the trivariate generating function (length, final altitude, number of occurrences of the pattern p), and we prove that the number of occurrences is normally distributed and linear with respect to the length of the walk: this is what Flajolet and Sedgewick call an instance of Borges’s theorem.


2015 ◽  
Vol Vol. 17 no. 1 (Combinatorics) ◽  
Author(s):  
Helmut Prodinger ◽  
Stephan Wagner

Combinatorics International audience We provide a rather general asymptotic scheme for combinatorial parameters that asymptotically follow a discrete double-exponential distribution. It is based on analysing generating functions Gh(z) whose dominant singularities converge to a certain value at an exponential rate. This behaviour is typically found by means of a bootstrapping approach. Our scheme is illustrated by a number of classical and new examples, such as the longest run in words or compositions, patterns in Dyck and Motzkin paths, or the maximum degree in planted plane trees.


10.37236/8024 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
N. R. Beaton ◽  
A. L. Owczarek ◽  
A. Rechnitzer

The set of random walks with different step sets (of short steps) in the quarter plane has provided a rich set of models that have profoundly different integrability properties. In particular, 23 of the 79 effectively different models can be shown to have generating functions that are algebraic or differentiably finite. Here we investigate how this integrability may change in those 23 models where in addition to length one also counts the number of sites of the walk touching either the horizontal and/or vertical boundaries of the quarter plane. This is equivalent to introducing interactions with those boundaries in a statistical mechanical context. We are able to solve for the generating function in a number of cases. For example, when counting the total number of boundary sites without differentiating whether they are horizontal or vertical, we can solve the generating function of a generalised Kreweras model. However, in many instances we are not able to solve as the kernel methodology seems to break down when including counts with the boundaries.


1978 ◽  
Vol 31 (6) ◽  
pp. 515 ◽  
Author(s):  
IG Enting

It is shown that low-temperature series expansions for lattice models in statistical mechanics can be obtained from a consideration of only connected strong subgraphs of the lattice. This general result is used as the basis of a linked-cluster form of the method of partial generating functions and also as the basis for extending the finite lattice method of series expansion to low-temperature series.


10.37236/591 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Shu-Chung Liu ◽  
Yi Wang ◽  
Yeong-Nan Yeh

The classical Chung-Feller Theorem offers an elegant perspective for enumerating the Catalan number $c_n= \frac{1}{n+1}\binom{2n}{n}$. One of the various proofs is by the uniform-partition method. The method shows that the set of the free Dyck $n$-paths, which have $\binom{2n}{n}$ in total, is uniformly partitioned into $n+1$ blocks, and the ordinary Dyck $n$-paths form one of these blocks; therefore the cardinality of each block is $\frac{1}{n+1}\binom{2n}{n}$. In this article, we study the Chung-Feller property: a sup-structure set can be uniformly partitioned such that one of the partition blocks is (isomorphic to) a well-known structure set. The previous works about the uniform-partition method used bijections, but here we apply generating functions as a new approach. By claiming a functional equation involving the generating functions of sup- and sub-structure sets, we re-prove two known results about Chung-Feller property, and explore several new examples including the ones for the large and the little Schröder paths. Especially for the Schröder paths, we are led by the new approach straightforwardly to consider "weighted" free Schröder paths as sup-structures. The weighted structures are not obvious via bijections or other methods.


Sign in / Sign up

Export Citation Format

Share Document