scholarly journals Lattice Paths, Sampling Without Replacement, and Limiting Distributions

10.37236/156 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
M. Kuba ◽  
A. Panholzer ◽  
H. Prodinger

In this work we consider weighted lattice paths in the quarter plane ${\Bbb N}_0\times{\Bbb N}_0$. The steps are given by $(m,n)\to(m-1,n)$, $(m,n)\to(m,n-1)$ and are weighted as follows: $(m,n)\to(m-1,n)$ by $m/(m+n)$ and step $(m,n)\to(m,n-1)$ by $n/(m+n)$. The considered lattice paths are absorbed at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$. We provide explicit formulæ for the sum of the weights of paths, starting at $(m,n)$, which are absorbed at a certain height $k$ at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$, using a generating functions approach. Furthermore these weighted lattice paths can be interpreted as probability distributions arising in the context of Pólya-Eggenberger urn models, more precisely, the lattice paths are sample paths of the well known sampling without replacement urn. We provide limiting distribution results for the underlying random variable, obtaining a total of five phase changes.


2004 ◽  
Vol 41 (3) ◽  
pp. 832-858 ◽  
Author(s):  
Fabrice Guillemin ◽  
Didier Pinchon

We derive in this paper closed formulae for the joint probability generating function of the number of customers in the two FIFO queues of a generalized processor-sharing (GPS) system with two classes of customers arriving according to Poisson processes and requiring exponential service times. In contrast to previous studies published on the GPS system, we show that it is possible to establish explicit expressions for the generating functions of the number of customers in each queue without calling for the formulation of a Riemann–Hilbert problem. We specifically prove that the problem of determining the unknown functions due to the reflecting conditions on the boundaries of the positive quarter plane can be reduced to a Poisson equation. The explicit formulae are then used to derive some characteristics of the GPS system (in particular the tails of the probability distributions of the numbers of customers in each queue).



10.37236/7799 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Veronika Irvine ◽  
Stephen Melczer ◽  
Frank Ruskey

Inspired by a new mathematical model for bobbin lace, this paper considers finite lattice paths formed from the set of step vectors $\mathfrak{A}=$$\{\rightarrow,$ $\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$ with the restriction that vertical steps $(\uparrow, \downarrow)$ cannot be consecutive. The set $\mathfrak{A}$ is the union of the well known Motzkin step vectors $\mathfrak{M}=$$\{\rightarrow,$ $\nearrow,$ $\searrow\}$ with the vertical steps $\{\uparrow, \downarrow\}$. An explicit bijection $\phi$ between the exhaustive set of vertically constrained paths formed from $\mathfrak{A}$ and a bisection of the paths generated by $\mathfrak{M}S$ is presented. In a similar manner, paths with the step vectors $\mathfrak{B}=$$\{\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$, the union of Dyck step vectors and constrained vertical steps, are examined.  We show, using the same $\phi$ mapping, that there is a bijection between vertically constrained $\mathfrak{B}$ paths and the subset of Motzkin paths avoiding horizontal steps at even indices.  Generating functions are derived to enumerate these vertically constrained, partially directed paths when restricted to the half and quarter-plane.  Finally, we extend Schröder and Delannoy step sets in a similar manner and find a bijection between these paths and a subset of Schröder paths that are smooth (do not change direction) at a regular horizontal interval.



2004 ◽  
Vol 41 (03) ◽  
pp. 832-858 ◽  
Author(s):  
Fabrice Guillemin ◽  
Didier Pinchon

We derive in this paper closed formulae for the joint probability generating function of the number of customers in the two FIFO queues of a generalized processor-sharing (GPS) system with two classes of customers arriving according to Poisson processes and requiring exponential service times. In contrast to previous studies published on the GPS system, we show that it is possible to establish explicit expressions for the generating functions of the number of customers in each queue without calling for the formulation of a Riemann–Hilbert problem. We specifically prove that the problem of determining the unknown functions due to the reflecting conditions on the boundaries of the positive quarter plane can be reduced to a Poisson equation. The explicit formulae are then used to derive some characteristics of the GPS system (in particular the tails of the probability distributions of the numbers of customers in each queue).



Author(s):  
Carsten Wiuf ◽  
Michael P.H Stumpf

In this paper, we discuss statistical families with the property that if the distribution of a random variable X is in , then so is the distribution of Z ∼Bi( X ,  p ) for 0≤ p ≤1. (Here we take Z ∼Bi( X ,  p ) to mean that given X = x ,  Z is a draw from the binomial distribution Bi( x ,  p ).) It is said that the family is closed under binomial subsampling. We characterize such families in terms of probability generating functions and for families with finite moments of all orders we give a necessary and sufficient condition for the family to be closed under binomial subsampling. The results are illustrated with power series and other examples, and related to examples from mathematical biology. Finally, some issues concerning inference are discussed.



Author(s):  
M. Vidyasagar

This chapter provides an introduction to some elementary aspects of information theory, including entropy in its various forms. Entropy refers to the level of uncertainty associated with a random variable (or more precisely, the probability distribution of the random variable). When there are two or more random variables, it is worthwhile to study the conditional entropy of one random variable with respect to another. The last concept is relative entropy, also known as the Kullback–Leibler divergence, which measures the “disparity” between two probability distributions. The chapter first considers convex and concave functions before discussing the properties of the entropy function, conditional entropy, uniqueness of the entropy function, and the Kullback–Leibler divergence.



Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 477 ◽  
Author(s):  
Roman Baravalle ◽  
Fernando Montani

A major challenge in neuroscience is to understand the role of the higher-order correlations structure of neuronal populations. The dichotomized Gaussian model (DG) generates spike trains by means of thresholding a multivariate Gaussian random variable. The DG inputs are Gaussian distributed, and thus have no interactions beyond the second order in their inputs; however, they can induce higher-order correlations in the outputs. We propose a combination of analytical and numerical techniques to estimate higher-order, above the second, cumulants of the firing probability distributions. Our findings show that a large amount of pairwise interactions in the inputs can induce the system into two possible regimes, one with low activity (“DOWN state”) and another one with high activity (“UP state”), and the appearance of these states is due to a combination between the third- and fourth-order cumulant. This could be part of a mechanism that would help the neural code to upgrade specific information about the stimuli, motivating us to examine the behavior of the critical fluctuations through the Binder cumulant close to the critical point. We show, using the Binder cumulant, that higher-order correlations in the outputs generate a critical neural system that portrays a second-order phase transition.



Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1046 ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon

Recently, the degenerate λ -Stirling polynomials of the second kind were introduced and investigated for their properties and relations. In this paper, we continue to study the degenerate λ -Stirling polynomials as well as the r-truncated degenerate λ -Stirling polynomials of the second kind which are derived from generating functions and Newton’s formula. We derive recurrence relations and various expressions for them. Regarding applications, we show that both the degenerate λ -Stirling polynomials of the second and the r-truncated degenerate λ -Stirling polynomials of the second kind appear in the expressions of the probability distributions of appropriate random variables.



1990 ◽  
Vol 22 (01) ◽  
pp. 1-24 ◽  
Author(s):  
S. N. Ethier

We discuss two formulations of the infinitely-many-neutral-alleles diffusion model that can be used to study the ages of alleles. The first one, which was introduced elsewhere, assumes values in the set of probability distributions on the set of alleles, and the ages of the alleles can be inferred from its sample paths. We illustrate this approach by proving a result of Watterson and Guess regarding the probability that the most frequent allele is oldest. The second diffusion model, which is new, assumes values in the set of probability distributions on the set of pairs (x, a), where x is an allele and a is its age. We illustrate this second approach by proving an extension of the Ewens sampling formula to age-ordered samples due to Donnelly and Tavaré.



2004 ◽  
Vol 41 (4) ◽  
pp. 1157-1170 ◽  
Author(s):  
Yijun Zhu ◽  
Zhe George Zhang

We consider an M/GI/1 queue with two types of customers, positive and negative, which cancel each other out. The server provides service to either a positive customer or a negative customer. In such a system, the queue length can be either positive or negative and an arrival either joins the queue, if it is of the same sign, or instantaneously removes a customer of the opposite sign at the end of the queue or in service. This study is a generalization of Gelenbe's original concept of a queue with negative customers, where only positive customers need services and negative customers arriving at an empty system are lost or need no service. In this paper, we derive the transient and the stationary probability distributions for the major performance measures in terms of generating functions and Laplace transforms. It has been shown that the previous results for the system with negative arrivals of zero service time are special cases of our model. In addition, we obtain the stationary waiting time distribution of this system in terms of a Laplace transform.



Sign in / Sign up

Export Citation Format

Share Document