A perturbation analysis of combined mode I and III dynamic crack propagation

1994 ◽  
Vol 104 (1-2) ◽  
pp. 27-63 ◽  
Author(s):  
H. Yuan
2001 ◽  
Author(s):  
C. Liu ◽  
A. J. Rosakis ◽  
M. G. Stout

Abstract In this investigation, we studied the process of dynamic crack propagation in a fiber-reinforced composite material using the optical Coherent Gradient Sensing (CGS) technique combined with high-speed photography. The mode-I fracture toughness of the unidirectional graphite/epoxy composite, IM7/8551-7, as a function of the crack-tip speed, was measured quantitatively. It was found that up to the Rayleigh wave speed of the composite material, the mode-I fracture toughness is a decreasing function of the crack-tip velocity. This behavior is similar to that observed in the dynamic crack propagation along interfaces between two homogeneous solids.


2012 ◽  
Vol 36 (5) ◽  
pp. 651-657 ◽  
Author(s):  
Jun Lei ◽  
Yue-Sheng Wang ◽  
Yifeng Huang ◽  
Qingsheng Yang ◽  
Chuanzeng Zhang

1998 ◽  
Vol 539 ◽  
Author(s):  
T. Cramer ◽  
A. Wanner ◽  
P. Gumbsch

AbstractTensile tests on notched plates of single-crystalline silicon were carried out at high overloads. Cracks were forced to propagate on {110} planes in a <110> direction. The dynamics of the fracture process was measured using the potential drop technique and correlated with the fracture surface morphology. Crack propagation velocity did not exceed a terminal velocity of v = 3800 m/s, which corresponds to 83%7 of the Rayleigh wave velocity vR. Specimens fractured at low stresses exhibited crystallographic cleavage whereas a transition from mirror-like smooth regions to rougher hackle zones was observed in case of the specimens fractured at high stresses. Inspection of the mirror zone at high magnification revealed a deviation of the {110} plane onto {111} crystallographic facets.


Sign in / Sign up

Export Citation Format

Share Document