Role of functional asymmetry of the cerebral hemispheres in organization of an instrumental food conditioned reflex in cats

1982 ◽  
Vol 12 (3) ◽  
pp. 249-253
Author(s):  
A. B. Kogan ◽  
G. A. Kuraev ◽  
G. �. Reps







1975 ◽  
Vol 228 (2) ◽  
pp. 404-409 ◽  
Author(s):  
S White ◽  
RJ McRitchie ◽  
PI Korner

The role of different central nervous regions in the reflex apnea, bradycardia, and mesenteric vasoconstriction evoked by nasopharyngeal stimulation with cigarette smoke was examined in unanesthetized shamoperated, thalamic, and pontine rabbits with intact and sectioned carotid sinus and aortic nerves (CS and AN). Apnea occurred in all preparations. In pontine animals with intact CS and AN, the heart rate response was reduced but not the mesenteric vasoconstriction. The role of suprabulbar and bulbospinal regions became more apparent when individual components of the input profile were examined in animals with controlled ventilation. The bradycardia and mesenteric vasoconstriction evoked by apnea without smoke, but not by smoke without apnea, were reduced in pontine animals. Prior section of the CS and AN attenuated the response in all neural preparations but to the least extent when cerebral hemispheres were intact. The data indicate that the respiratory reflex is predominantly integrated at bulbospinal sites, but the cardiovascular reflex is integrated at both bulbospinal and suprabulbar sites, or is integrated at bulbospinal and modulated from suprabulbar sites.



1998 ◽  
Vol 28 (6) ◽  
pp. 678-685 ◽  
Author(s):  
V. G. Kassil' ◽  
L. A. Vataeva ◽  
G. V. Makukhina


1999 ◽  
Vol 29 (3) ◽  
pp. 257-261 ◽  
Author(s):  
É. B. Arushanyan ◽  
M. G. Vodolazhskaya


2010 ◽  
Vol 40 (7) ◽  
pp. 733-736
Author(s):  
V. V. Abramov ◽  
I. A. Gontova ◽  
I. M. Ignatiev ◽  
E. L. Gelfgat ◽  
V. A. Kozlov


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5059-5059 ◽  
Author(s):  
Mo Yang ◽  
Lei Liu ◽  
Enyu Liang ◽  
Beng H Chong ◽  
Chunfu Li

Abstract Objective: The infusion of bone marrow cells into the damaged brain has been proposed as a new clinical practice for this disorder. Alternatively, hematopoietic growth factors may have a direct role on neural protection or have a mobilizing effect on bone marrow stem/progenitor cells to circulation for brain repair. Based on our previous findings, there are many similarities between megakaryocytes and neurons on functions and antigen expression such as neural marker MAP2, GFAP and Tau, 5-HT2A, 2B and 2C receptors (Stem Cells, 2014). Thrombopoietin (TPO) is a growth factor for megakaryocytic lineage. We postulate that TPO may play a role on neural protection or regeneration. The effect of TPO on nervous system has not been well investigated. Methods: To validate this hypothesis, we investigated the expression and role of TPO/TPO receptors in neural cells and a neonatal rat model of hypoxic-ischemic (HIE) brain damage. Results: To investigate the effect of TPO on in-vivo neural protection, a neonatal rat model of HIE brain damage was established. Brain injury was measured by the percentage weight reduction of the ipsilateral cerebral hemisphere as compared to the contralateral hemisphere. There was significantly less brain atrophy in TPO treated animals (12.0±1.2% and 11.5±1.0%) when compared with the saline control (21.0±1.6% and 24.4±2.2%) at 7 and 28 days post-operation (P<0.05, n=12). The percentage of NSE (Neuron-specific enolase) positive cells in the forelimb area of the cortex in the right hemisphere was significantly higher in the TPO group than that of the saline group (P<0.05, n=12). An improvement in sensory motor functions was also demonstrated after TPO treatment. TPO mRNA was also identified in human cerebral hemispheres, cerebellum, and mouse neural stem cell line C17.2 by RT-PCR methods. TPO protein was detected in human cerebrospinal fluids (n=10) by ELISA. Moreover, TPO receptor (c-mpl) mRNA was identified in human cerebral hemispheres and cerebellum, and C17.2 cells using RT-PCR. The expression of c-mpl protein was also confirmed on neurons in the human cerebral hemispheres, hippocampus, cerebellum, brainstem and spinal cord using immune-cytochemical staining. TPO also showed a stimulating effect on the in-vitro growth of C17.2 cells by the MTT assay. TPO activated the phosphoinositide 3-kinase(PI3K)/Akt signaling pathway which was demonstrated by Western blot. The Akt activation by TPO was inhibited by the PI3-kinase inhibitor LY294002. Conclusions: Our study provided the evidences showing the expression of TPO and TPO receptor (c-mpl) in neural cells and this effect may be mediated by c-mpl and Akt signaling. More importantly, our observation further demonstrated the functional role of TPO on neural protection in a rat model. These findings point to the possibility of a new strategy for treating brain damage by hematopoietic growth factors. Disclosures Yang: National Natural Science Foundation of China: Other: National Natural Science Foundation of China(81270580).



Sign in / Sign up

Export Citation Format

Share Document