Some remarks on Sobolev type inequalities

1994 ◽  
Vol 2 (4) ◽  
pp. 427-442 ◽  
Author(s):  
Adimurthi ◽  
S. L. Yadava
Keyword(s):  
2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


2021 ◽  
Vol 151 ◽  
pp. 111264
Author(s):  
K. Kavitha ◽  
V. Vijayakumar ◽  
Anurag Shukla ◽  
Kottakkaran Sooppy Nisar ◽  
R. Udhayakumar

2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


2006 ◽  
Vol 42 (2) ◽  
pp. 269-278 ◽  
Author(s):  
G. A. Sviridyuk ◽  
A. A. Zamyshlyaeva
Keyword(s):  

2005 ◽  
Vol 2005 (2) ◽  
pp. 93-115
Author(s):  
C. P. Oliveira

This paper studies, in a partial but concise manner, approximate solutions of equations defined by complex spherical multiplier operators. The approximations are from native spaces embedded in Sobolev-type spaces and derived from the use of positive definite functions to perform spherical interpolation.


Sign in / Sign up

Export Citation Format

Share Document