Effect of dynamic loading on tensile strength and failure mechanisms in a SiC fibre reinforced ceramic matrix composite

1992 ◽  
Vol 27 (4) ◽  
pp. 930-936 ◽  
Author(s):  
J. Lankford ◽  
H. Couque ◽  
A. Nicholls
Author(s):  
Michael J. Presby ◽  
Nesredin Kedir ◽  
Luis J. Sanchez ◽  
D. Calvin Faucett ◽  
Sung R. Choi ◽  
...  

The life-limiting behavior of an N720/alumina oxide/oxide ceramic matrix composite (CMC) was assessed in tension in air at 1200°C for unimpacted and impacted specimens. CMC targets were subjected to ballistic impact at ambient temperature with an impact velocity of 250 m/s under a full support configuration. Subsequent post-impact ultimate tensile strength was determined as a function of test rate in order to determine the susceptibility to delayed failure, or slow crack growth (SCG). Unimpacted and impacted specimens exhibited a significant dependency of ultimate tensile strength on test rate such that the ultimate tensile strength decreased with decreasing test rate. Damage was characterized using x-ray computed tomography (CT), and scanning electron microscopy (SEM). A phenomenological life prediction model was developed in order to predict life from one loading condition (constant stress-rate loading) to another (constant stress loading). The model was verified in part via a theoretical preloading analysis.


Author(s):  
Michael J. Presby ◽  
Nesredin Kedir ◽  
Luis J. Sanchez ◽  
D. Calvin Faucett ◽  
Sung R. Choi ◽  
...  

The life-limiting behavior of an N720/alumina oxide/oxide ceramic matrix composite (CMC) was assessed in tension in air at 1200 °C for unimpacted and impacted specimens. CMC targets were subjected to ballistic impact at ambient temperature with an impact velocity of 250 m/s under a full support configuration. Subsequent postimpact ultimate tensile strength was determined as a function of test rate in order to determine the susceptibility to delayed failure or slow crack growth (SCG). Unimpacted and impacted specimens exhibited a significant dependency of ultimate tensile strength on test rate such that the ultimate tensile strength decreased with decreasing test rate. Damage was characterized using X-ray computed tomography (CT) and scanning electron microscopy (SEM). A phenomenological life prediction model was developed in order to predict life from one loading condition (constant stress-rate loading) to another (constant stress loading). The model was verified in part via a theoretical preloading analysis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gang Zhao ◽  
Jianbo Tang ◽  
Jun Wang ◽  
Yunsheng Chen ◽  
Yajie Feng ◽  
...  

An advanced modeling strategy for notched ceramic matrix composite coupons with patch reinforcement was proposed to investigate the failure mechanisms. This model considered the tailored fiber–placed (TFP) yarn details obtained from the design phase and the embedded element concept which was used to successfully overcome the meshing difficulties. Inter-ply “glue” layers were simulated using the surface-based contact cohesive element method, so the delamination due to interfacial material discontinuity and damage can be well reproduced and analyzed. For composite ply, the energy-based composite progressive damage model that is independent of the mesh size was applied. Virtual test campaign was performed with a variety of geometrical and material parameters, and the damage and failure mechanisms based on the stress analysis can be revealed to support the design optimization of patch reinforcement.


Sign in / Sign up

Export Citation Format

Share Document