Visualization of the membrane bound cytoskeleton and coated pits of plant cells by means of dry cleaving

PROTOPLASMA ◽  
1984 ◽  
Vol 119 (3) ◽  
pp. 212-218 ◽  
Author(s):  
J. A. Traas
2021 ◽  
Vol 478 (8) ◽  
pp. 1515-1524
Author(s):  
Abir U. Igamberdiev ◽  
Leszek A. Kleczkowski

In the conditions of [Mg2+] elevation that occur, in particular, under low oxygen stress and are the consequence of the decrease in [ATP] and increase in [ADP] and [AMP], pyrophosphate (PPi) can function as an alternative energy currency in plant cells. In addition to its production by various metabolic pathways, PPi can be synthesized in the combined reactions of pyruvate, phosphate dikinase (PPDK) and pyruvate kinase (PK) by so-called PK/PPDK substrate cycle, and in the reverse reaction of membrane-bound H+-pyrophosphatase, which uses the energy of electrochemical gradients generated on tonoplast and plasma membrane. The PPi can then be consumed in its active forms of MgPPi and Mg2PPi by PPi-utilizing enzymes, which require an elevated [Mg2+]. This ensures a continuous operation of glycolysis in the conditions of suppressed ATP synthesis, keeping metabolism energy efficient and less dependent on ATP.


1985 ◽  
Vol 101 (4) ◽  
pp. 1473-1480 ◽  
Author(s):  
T P Cheng ◽  
T S Reese

We have used computer-assisted reconstructions of continuous serial sections to study the cytoplasmic organization of growth cones in vivo. Optic tecta from 6.25-6.5-d-old chicken embryos were quick-frozen and then freeze-substituted in acetone-osmium tetroxide or, for comparison, prepared by conventional fixation. Images of eight freeze-substituted and two conventionally fixed growth cones were reconstructed from aligned serial micrographs. After freeze-substitution, numerous lumenless membrane-bound sacs arrayed in multilamellar stacks appear to replace the abundant smooth endoplasmic reticulum found after chemical fixation. Microtubule fascicles progressively diverge from their typical fascicular organization in the initial segment of the growth cone and are absent in the varicosity and the more distal segment. Mitochondria, in contrast, are concentrated in the proximal segment of the varicosity; multilamellar stacks and endosome-like vacuoles are in the distal segment; and coated pits and vesicles are concentrated near the terminal filopodium, which is the most distal and organelle-poor domain of the growth cone. These observations suggest that dilation and fusion of the lumenless, membrane-bound sacs that occurs during chemical fixation give rise to the network of smooth endoplasmic reticulum. The three-dimensional reconstructions show that the cytoplasmic components of growth cones, including the membrane-bound sacs and multilamellar stacks revealed by freeze substitution, are polarized along the axis of these growth cones, which suggests that they have a role in recycling of membrane during elongation of the growth cone.


2015 ◽  
Vol 470 (1) ◽  
pp. 131-144 ◽  
Author(s):  
Macarena Rodriguez-Walker ◽  
Aldo A. Vilcaes ◽  
Eduardo Garbarino-Pico ◽  
José L. Daniotti

Sialidase NEU3 is a key enzyme in the catabolism of gangliosides. We demonstrated that NEU3 impairs cargo internalization via clathrin-coated pits, affecting AP-2 subcellular distribution. This study delineates previously unidentified cellular functions of NEU3.


1985 ◽  
Vol 47 (1) ◽  
pp. 79-87 ◽  
Author(s):  
J. Keizer ◽  
J. Ramirez ◽  
E. Peacock-López
Keyword(s):  

Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 327 ◽  
Author(s):  
Xiaona Tan ◽  
Kaixia Li ◽  
Zheng Wang ◽  
Keming Zhu ◽  
Xiaoli Tan ◽  
...  

Vacuoles, cellular membrane-bound organelles, are the largest compartments of cells, occupying up to 90% of the volume of plant cells. Vacuoles are formed by the biosynthetic and endocytotic pathways. In plants, the vacuole is crucial for growth and development and has a variety of functions, including storage and transport, intracellular environmental stability, and response to injury. Depending on the cell type and growth conditions, the size of vacuoles is highly dynamic. Different types of cell vacuoles store different substances, such as alkaloids, protein enzymes, inorganic salts, sugars, etc., and play important roles in multiple signaling pathways. Here, we summarize vacuole formation, types, vacuole-located proteins, and functions.


1986 ◽  
Vol 25 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Enrique Peacock-Lopez ◽  
Jose Antonio Ramirez
Keyword(s):  

1996 ◽  
Vol 76 (4) ◽  
pp. 949-966 ◽  
Author(s):  
K. Sandvig ◽  
B. van Deurs

Protein toxins such as ricin and Shiga toxin with intracellular targets have to be endocytosed and translocated to the cytosol to inhibit the protein synthesis and thereby kill the cell. Ricin is internalized by both clathrin-dependent and -independent endocytic mechanisms, whereas Shiga toxin seems to be taken up exclusively from clathrin-coated pits. After endocytosis, internalized membrane and content are delivered to endosomes, where sorting for further routing in the cell takes place. Toxins that remain membrane bound at low endosomal pH can be recycled to the cell surface or transcytosed in polarized epithelia. A large proportion of internalized toxin is transported to lysosomes for degradation. Most importantly, a fraction of the internalized ricin and Shiga toxin molecules is delivered to the trans-Golgi network (TGN). Shiga toxin can, in some very sensitive cells, be transported retrogradely through the Golgi cisterns all the way back to the endoplasmic reticulum (ER), and it is possible that also ricin is transported retrogradely to the ER. In this review, a cell biological overview of these intracellular transport steps is presented, and evidence is provided that the delivery to the TGN and the subsequent retrograde transport to the ER are required for optimal intoxication. Moreover, it is argued that knowledge of this transport is important for targeted drug delivery such as the application of immunotoxins in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document