Periodic array of quantum dots in a magnetic field: Irrational flux; honeycomb lattice

1995 ◽  
Vol 98 (4) ◽  
pp. 473-477 ◽  
Author(s):  
V. A. Geyler ◽  
I. Yu. Popov
2020 ◽  
Vol 102 (7) ◽  
Author(s):  
H. C. Wu ◽  
D. J. Hsieh ◽  
T. W. Yen ◽  
P. J. Sun ◽  
D. Chandrasekhar Kakarla ◽  
...  

1990 ◽  
Vol 216 ◽  
Author(s):  
Kamakhya P. Ghatak ◽  
S. N. Biswas

ABSTRACTIn this paper we studied the thermoelectric power under classically large magnetic field (TPM) in quantum wells (QWs), quantum well wires (QWWS) and quantum dots (QDs) of Bi by formulating the respective electron dispersion laws. The TPM increases with increasing film thickness in an oscillatory manner in all the cases. The TPM in QD is greatest and the least for quantum wells respectively. The theoretical results are in agreement with the experimental observations as reported elsewhere.


2011 ◽  
Vol 25 (26) ◽  
pp. 3435-3442
Author(s):  
XIAOYAN YAO

Wang–Landau algorithm of Monte Carlo simulation is performed to understand the thermodynamic and magnetic properties of antiferromagnetic Ising model on honeycomb lattice. The internal energy, specific heat, free energy and entropy are calculated to present the thermodynamic behavior. For magnetic property, the magnetization and magnetic susceptibility are discussed at different temperature upon different magnetic field. The antiferromagnetic order is confirmed to be the ground state of the system, and it can be destroyed by a large magnetic field.


Sign in / Sign up

Export Citation Format

Share Document