nonlocal symmetries
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 118 (34) ◽  
pp. e2100691118
Author(s):  
Kai Chen ◽  
Matthew Weiner ◽  
Mengyao Li ◽  
Xiang Ni ◽  
Andrea Alù ◽  
...  

The properties of topological systems are inherently tied to their dimensionality. Indeed, higher-dimensional periodic systems exhibit topological phases not shared by their lower-dimensional counterparts. On the other hand, aperiodic arrays in lower-dimensional systems (e.g., the Harper model) have been successfully employed to emulate higher-dimensional physics. This raises a general question on the possibility of extended topological classification in lower dimensions, and whether the topological invariants of higher-dimensional periodic systems may assume a different meaning in their lower-dimensional aperiodic counterparts. Here, we demonstrate that, indeed, for a topological system in higher dimensions one can construct a one-dimensional (1D) deterministic aperiodic counterpart which retains its spectrum and topological characteristics. We consider a four-dimensional (4D) quantized hexadecapole higher-order topological insulator (HOTI) which supports topological corner modes. We apply the Lanczos transformation and map it onto an equivalent deterministic aperiodic 1D array (DAA) emulating 4D HOTI in 1D. We observe topological zero-energy zero-dimensional (0D) states of the DAA—the direct counterparts of corner states in 4D HOTI and the hallmark of the multipole topological phase, which is meaningless in lower dimensions. To explain this paradox, we show that higher-dimension invariant, the multipole polarization, retains its quantization in the DAA, yet changes its meaning by becoming a nonlocal correlator in the 1D system. By introducing nonlocal topological phases of DAAs, our discovery opens a direction in topological physics. It also unveils opportunities to engineer topological states in aperiodic systems and paves the path to application of resonances associates with such states protected by nonlocal symmetries.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1268
Author(s):  
Yarong Xia ◽  
Ruoxia Yao ◽  
Xiangpeng Xin ◽  
Yan Li

In this paper, we provide a method to construct nonlocal symmetry of nonlinear partial differential equation (PDE), and apply it to the CKdV (CKdV) equations. In order to localize the nonlocal symmetry of the CKdV equations, we introduce two suitable auxiliary dependent variables. Then the nonlocal symmetries are localized to Lie point symmetries and the CKdV equations are extended to a closed enlarged system with auxiliary dependent variables. Via solving initial-value problems, a finite symmetry transformation for the closed system is derived. Furthermore, by applying similarity reduction method to the enlarged system, the Painlevé integral property of the CKdV equations are proved by the Painlevé analysis of the reduced ODE (Ordinary differential equation), and the new interaction solutions between kink, bright soliton and cnoidal waves are given. The corresponding dynamical evolution graphs are depicted to present the property of interaction solutions. Moreover, With the help of Maple, we obtain the numerical analysis of the CKdV equations. combining with the two and three-dimensional graphs, we further analyze the shapes and properties of solutions u and v.


Author(s):  
George W. Bluman ◽  
Rafael de la Rosa ◽  
María Santos Bruzón ◽  
María Luz Gandarias

In this paper, we show direct connections between the conservation law (CL)-based method and the differential invariant (DI)-based method for obtaining nonlocally related systems and nonlocal symmetries for a given partial differential equation (PDE) system. For a PDE system with two independent variables, we show that the CL method is a special case for the DI method. For a PDE system with at least three independent variables, we show that the CL method, for a curl-type CL, is a special case for the DI method. We also consider the situation for a self-adjoint, i.e. variational, linear PDE system. Here, a solution of the linear PDE system yields a nonlocally related system for both approaches. In particular, the resulting nonlocally related systems need not be invertibly equivalent. Through an example, we show that three distinct nonlocally related systems can be obtained from an admitted point symmetry.


Author(s):  
George W. Bluman ◽  
Rafael de la Rosa ◽  
María Santos Bruzón ◽  
María Luz Gandarias

Nonlocally related systems, obtained through conservation law and symmetry-based methods, have proved to be useful for determining nonlocal symmetries, nonlocal conservation laws, non-invertible mappings and new exact solutions of a given partial differential equation (PDE) system. In this paper, it is shown that the symmetry-based method is a differential invariant-based method. It is shown that this allows one to naturally extend the symmetry-based method to ordinary differential equation (ODE) systems and to PDE systems with at least three independent variables. In particular, we present the situations for ODE systems, PDE systems with two independent variables and PDE systems with three or more independent variables, separately, and show that these three situations are directly connected. Examples are exhibited for each of the three situations.


Sign in / Sign up

Export Citation Format

Share Document