Selection and improvement of numerical methods for investigation of the stress-strain state as applied to joints with a guaranteed negative clearance

1983 ◽  
Vol 15 (9) ◽  
pp. 1201-1204
Author(s):  
I. A. Duvidzon ◽  
Yu. L. Kozhevnikov ◽  
S. �. Umanskii
2019 ◽  
Vol 85 (6) ◽  
pp. 47-52
Author(s):  
N. A. Makhutov ◽  
I. V. Makarenko ◽  
L. V. Makarenko

Safety, survivability, and serviceability of the equipment are governed by the strength characteristics of the separate units and elements which can contain initial or operational defects such as superficial differently oriented semi-elliptical cracks. Numerical methods of calculation provide a large bulk of information about the stress-strain state (SSS) of those elements proceeding from the given algorithms for calculating the corresponding fracture models. Change in the type of the SSS near the crack contour when going from the bulk to the surface depends on the constraint of deformations along their front, i.e., on the 3D character of the SSS. Diagnostics of the form change of the defects (surface differently oriented semi-elliptic low-cycle cracks) is carried out on the basis of experimental results and numerical solutions. The data of the finite element modeling are implemented on the basis of macros of the ANSYS program complex. The regularity of the directionality of developing the elastoplastic fracture under low-cycle loading is studied. The proposed methodology is proved by the parametric equations of the kinetics of forming changes of the cracks under study in the fractographic analysis of the surfaces of their development. The results of testing samples with semi-elliptic cracks under low-cycle loading are used in analysis of the parameters of the morphology of the surfaces of the developed defects. The results of measuring fields of elastoplastic deformation intensity in the crack tip and geometrical characteristics of the fracture surface development are presented. Analysis of the dynamics of the local stress-strain state near the contour of multi-oriented defects in parts and structural units of the equipment showed a good agreement between the experimental parameters of the geometry of developing cracks and characteristics obtained by numerical methods. The presented parametric equations specify the characteristics of nonlinear fracture mechanics thus providing reliable estimation and forecasting of survivability, and safety of serviceability of the critical equipment. The deformation criteria of nonlinear fracture mechanics are used to demonstrate the dependence of fracture development on the 3D character of the stress-strain state indicating to the directionality of the geometric development of the fracture surface form.


2021 ◽  
Vol 15 (2) ◽  
pp. 178-183
Author(s):  
Leonid V. Kolomiets ◽  
Aleksej Aniskin ◽  
Viktor F. Orobey ◽  
Alexander Daschenko ◽  
Aleksandr M. Lymarenko ◽  
...  

The work uses modern numerical methods of mechanics of a deformable solid to analyze the stress-strain state of orthopedic structures in order to improve them and improve the quality of treatment of patients. Among the many numerical methods, the attention of the authors was drawn to the finite element method and to the numerical and analytical method of boundary elements in the author's edition. Settlement models of both metal apparatuses and parts of a person’s arm with a fracture are constructed. The stress – strain state in various zones of the biomechanical system was calculated. It is shown that the numerical-analytical method of boundary elements allows obtaining more accurate results with fewer equations in the resolution system. It is noted that in the case of the considered biomechanical systems, its elements undergo tension – compression, shear, torsion, and bending. To consider them, solutions are presented for Cauchy problems, which are included in the general system of resolving equations of the MGE. It is shown that, unlike the FEM, the MGE simplifies the algorithm for calculating biomechanical systems. Comparison with the FEM results shows their good agreement, which proves the reliability of the calculation results of both methods.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document