scholarly journals Kinetics of deformation and damage accumulation in concentration zones with nonisothermal low-cycle loading

1985 ◽  
Vol 17 (8) ◽  
pp. 1050-1056
Author(s):  
A. G. Kazantsev ◽  
A. P. Gusenkov ◽  
A. N. Chernykh
2018 ◽  
Vol 226 ◽  
pp. 03021
Author(s):  
Ivan A. Volkov ◽  
Leonid A. Igumnov ◽  
Aleksandr A. Ipatov

A mathematical model describing the processes of elastoplastic deformation and damage accumulation under low-cycle loading has been developed, based on the viewpoint of mechanics of damaged media (MDM). The MDM model consists of three interrelated parts: defining relations describing elastoplastic behavior of the materials, taking into account its dependence on the failure process; evolutionary equations describing the kinetics of damage accumulation; strength criteria of the damaged material. In order to assess the reliability and scope of applicability of the defining relations of mechanics of damaged media, the processes of plastic deformation and damage accumulation in variety of structural steels in low-cycle tests have been numerically analyzed, and numerical results obtained have been compared with the data of full-scale experiments. It is shown that the presented model of mechanics of damaged media adequately describes, both qualitatively and quantitatively, with accuracy, necessary for practical calculations, the main effects of the processes of plastic deformation and damage accumulation in structural alloys under block-type non-stationary non-symmetrical low-cycle loading.


2021 ◽  
Vol 87 (11) ◽  
pp. 55-63
Author(s):  
M. M. Gadenin

The results of computation and experimental studies of changes in the regularities of the strain resistance and damage accumulation in conditions of the irregular low cycle loading are presented and compared with similar data for a regular cyclic elastoplastic deformation at the same loading. The irregular mode of low cycle loading implemented in the study is adopted in the form of an equiprobable distribution of changes in the stress amplitudes within a given range between maximum and minimum levels at the symmetric form of the cycles. This mode was reproduced on test equipment through introduction of the corresponding functional dependence of changes in the stress amplitude in the cycles into the control program. The data on a cycle-by-cycle kinetics of both cyclic and unilaterally accumulated strains obtained under irregular mode of loading were recorded in a databank and then compared with the data for a regular loading. This provided the possibility of their analytical description by the corresponding equations of state with the correction of the parameters of the diagrams of cyclic elastoplastic deformation taking into account the conditions of irregularity of loading modes. The results of the experiments are presented in the form of diagrams of the tests modes, curves of a low cycle fatigue of the studied material at the soft and hard loading modes, diagrams of a cycle-by-cycle kinetics of the cyclic and accumulated strains at the regular and irregular modes, and also as kinetic diagrams of damages accumulation for these conditions. Using the summation criteria expressed through the deformation characteristics of accumulated damage, it is shown that taking into account change in the character of the strain development under irregular low-cycle loading, the criterion dependences can be used to assess the durability and compare it with the similar data under regular modes when accepting the condition of attaining the limiting state.


1976 ◽  
Vol 8 (10) ◽  
pp. 1217-1221
Author(s):  
V. Ya. Yablonko ◽  
V. I. Erofeev
Keyword(s):  

2021 ◽  
Vol 83 (4) ◽  
pp. 481-504
Author(s):  
I.A, Volkov ◽  
L.A. Igumnov ◽  
D.N. Shishulin ◽  
A.A. Belov

The main physical regularities of complex thermoviscoplastic deformation and accumulation of damage in structural materials (metals and their alloys) under various modes of cyclic combined thermomechanical loading and mathematical models of these processes are considered. A mathematical model of the mechanics of a damaged medium has been developed, which makes it possible to simulate the cyclic viscoelastoplastic behavior and determine the resource characteristics of polycrystalline structural alloys under the combined action of degradation mechanisms that combine material fatigue and creep. The model is based on the joint integration of equations describing the kinetics of the stress-strain state and damage accumulation processes. The final relation to the model is the strength criterion, the fulfillment of which corresponds to the formation of a macrocrack. The plasticity equations are based on the basic principles of the flow theory. To describe the creep process in the stress space, a family of equipotential creep surfaces of the corresponding radius and having a common center is introduced. The relationship between the creep equations and the thermoplasticity equations describing “instantaneous” plastic deformations is carried out at the loading stage through the stress deviator and the corresponding algorithm for determining and at the loading stage by means of certain relationships between “temporary” and “instantaneous” scalar and tensor quantities. At the stage of development of damage scattered throughout the volume, the effect of damage on the physical and mechanical characteristics of the material is observed. This influence can be taken into account by introducing effective stresses. In the general case, stresses, plastic strains, and creep strains are determined by integrating the thermal creep equations by the four-point Runge-Kutta method with correction of the stress deviator and subsequent determination of stresses according to the thermoplasticity equations, taking into account the average creep strain rate at a new time. The relationships that simulate the accumulation of damage are based on the energy approach to determining the resource characteristics. The kinetics of fatigue damage accumulation is based on the introduction of a scalar parameter of damage to a structural material and a unified model form for representing the degradation mechanism under fatigue and creep conditions. The influence of scattered damage on the physical and mechanical characteristics of the material is taken into account by introducing effective stresses. The results of numerical simulation of cyclic thermoplastic deformation and accumulation of fatigue damage in heat-resistant alloys (Haynes188) under combined thermomechanical loading are presented. Particular attention is paid to the issues of modeling the processes of cyclic thermoplastic deformation and the accumulation of fatigue damage for complex deformation processes accompanied by the rotation of the main areas of stress and strain tensors.


Sign in / Sign up

Export Citation Format

Share Document