effective stresses
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 39)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Anatoliy Hrabovsʹkyy ◽  
Oleksandr Bondarets ◽  
Iryna Babiienko

Kinetics of accumulation of damages in engineering objects, which work at repeated-alternating soft and hard modes of loading of details and elements of constructions of vehicles (cars, cars, railway transport, etc.). When changing the direction of the load force to the opposite in the structural material there is a phenomenon of changing the kinetics of accumulation of damage, ie the damage factor at separation and shear changes, which affects the effective stresses and service life of equipment. This effect of the factor of the influence of repeated variables on the redistribution of the kinetics of damage accumulation is considered experimentally for materials with different plastic properties


Author(s):  
Miao-miao Song ◽  
Jian-wen Ding ◽  
Qiang Xiao ◽  
Jie Yin ◽  
Gui-zhong Xu

Author(s):  
Jie Yin ◽  
Qing-yuan Wang ◽  
Jian-wen Ding ◽  
Gui-zhong Xu ◽  
Guang-hua Hu

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhammad Safdar ◽  
Tim Newson ◽  
Faheem Shah

AbstractThe effects of fibre (0–3 %) and cement (0–3 %) additives, on Toyoura sand were examined under consolidated drained compression and extension loading conditions. All samples were prepared to a target dry density value (e.g., $${\rho }_{d}$$ ρ d = 1.489 g/cm3) of Toyoura sand using under-compaction moist tamping technique. In compression, the unreinforced specimens exhibited a behavior of medium dense sand and reached a peak deviator stress (qp) at approximately 4 % axial strain ($${\epsilon }_{a}$$ ϵ a ) for the varying mean effective stresses, pʹ (i.e. 50–400 kPa). The peak drained strength increases in fibre reinforced cemented specimens were found to be up to 132 % (lower effective stresses) and 243 % (higher effective stresses), while, the drained strength increases at critical state for the fibre reinforced cemented specimens were found to be up to 105 % (lower effective stresses) and 245 % (higher effective stresses). Overall, the fibre and cement additives increased the stiffness, peak and strength at critical state of pure Toyoura sand but were found to be least effective in extension loading. Moreover, the stress ratio, peak and critical state stress ratios increase with the addition of fibres and cement. The secant modulus shows limited increases for the fibre reinforced specimens. However, a significant improvement in the secant modulus is observed for the fibre reinforced cemented specimens. For both unreinforced and reinforced specimens there is a decrease in volumetric strain with greater effective stresses or in other words, the rate of dilation decreases with increases in effective stresses. The fibre and cement additives also increased the strength parameters (frictional angle, cohesion), dilatancy angle, slope of the critical state line, and decreased the state parameter of pure Toyoura sand.


Author(s):  
Anatoliy Grabovskiy ◽  
Oleksandr Bondarets ◽  
Iryna Babiienko

The paper considers the kinetics of damage accumulation in engineering facilities that operate under repeated static alternating load modes - parts and structural elements of vehicles (cars, airplanes, railways). When changing the direction of the load force in the structural material there is a phenomenon of changing the shape of micro defects, which leads to their "healing", ie the factor of damage to separation and shear changes, which affects the effective stresses and service life of equipment. This effect of defect healing is considered experimentally for materials with different plastic properties.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Zihao Li ◽  
Yuntian Teng ◽  
Ming Fan ◽  
Nino Ripepi ◽  
Cheng Chen

Summary A novel multiphysics multiscale multiporosity shale gas transport (M3ST) model was developed to investigate shale gas transport in both transient and steady states. The microscale model component contains a kerogen domain and an inorganic matrix domain, and each domain has its own geomechanical and gas transport properties. Permeabilities of various shale cores were measured in the laboratory using a pulse decay permeameter (PDP) with different pore pressure and confining stress combinations. The PDP-measured apparent permeability as a function of pore pressure under two effective stresses was fitted using the microscale M3ST model component based on nonlinear least squares fitting (NLSF), and the fitted model parameters were able to provide accurate model predictions for another effective stress. The parameters and petrophysical properties determined in the steady state were then used in the transient-state,continuum-scale M3ST model component, which performed history matching of the evolutions of the upstream and downstream gas pressures. In addition, a double-exponential empirical model was developed as a powerful alternative to the M3ST model to fit laboratory-measured apparent permeability under various effective stresses and pore pressures. The developed M3ST model and the research findings in this study provided critical insights into the role of the multiphysics mechanisms, including geomechanics, fluid dynamics and transport, and the Klinkenberg effect on shale gas transport across different spatial scales in both steady and transient states.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1976
Author(s):  
Gang Zhang ◽  
Jahanzaib Israr ◽  
Wenguo Ma ◽  
Hongyu Wang

Results are reported from a series of filtration tests simulated using coupled computational fluid dynamics and the discrete element method (CCFD-DEM) to investigate the factors controlling the mechanism of base particle erosion and their subsequent capture in loaded granular filters. Apart from geometrical factors such as particle and void sizes, the filter effectiveness was found to be controlled by the magnitudes of the hydraulic gradients and the effective stresses. The results of numerical simulations revealed that the base soils exhibit significant stress reduction that reduces further due to seepage, and the base particles migrate into the filter, bearing very low effective stresses (i.e., localized piping in base soil). Based on the limit equilibrium of hydraulic and mechanical constraints, a linear hydromechanical model has been proposed that governs the migration and capture of base particles in the filter (i.e., filter effectiveness avoiding piping) for cases simulated in this study. Nevertheless, the proposed model agrees closely with the simulation results of this study and those adopted from other published works, thereby showing a reasonable possibility of using the proposed model as a measure of retention capacity of loaded protective filters.


Sign in / Sign up

Export Citation Format

Share Document