The asymptotical behaviour of the Abelian Chern-Simons gauge theory with matter in curved space-time

1992 ◽  
Vol 54 (3) ◽  
pp. 527-529 ◽  
Author(s):  
S. D. Odintsoy
1990 ◽  
Vol 05 (11) ◽  
pp. 815-821
Author(s):  
R. BANERJEE ◽  
D. CHATTERJEE

The expression for the Chern-Simons currents in 1 + 2 and 1 + 4 dimensions are constructed explicitly in the presence of gravity. Results indicate that these are related to the axial anomalies corresponding to one lower dimension.


1993 ◽  
Vol 08 (38) ◽  
pp. 3665-3672 ◽  
Author(s):  
J.D. EDELSTEIN ◽  
G. LOZANO ◽  
F.A. SCHAPOSNIK

We study an Abelian Higgs model coupled to a background metric. We find Bogomol’nyi equations when the coupling is achieved through an Rɸ2 term (R being the scalar curvature and ɸ the Higgs scalar). Remarkably, these equations coincide with those arising in models where the gauge field dynamics is governed by a Chern-Simons term so that vortex solutions in our system can be related to self-dual Chern-Simons vortices.


2008 ◽  
Vol 23 (08) ◽  
pp. 1282-1285 ◽  
Author(s):  
NAKIA CARLEVARO ◽  
ORCHIDEA MARIA LECIAN ◽  
GIOVANNI MONTANI

A gauge theory of the Lorentz group, based on the different behavior of spinors and vectors under local transformations, is formulated in a flat space-time and the role of the torsion field within the generalization to curved space-time is briefly discussed. The spinor interaction with the new gauge field is then analyzed assuming the time gauge and stationary solutions, in the non-relativistic limit, are treated to generalize the Pauli equation.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Koichi Harada ◽  
Pei-Ming Ho ◽  
Yutaka Matsuo ◽  
Akimi Watanabe

Abstract In the matrix model approaches of string/M theories, one starts from a generic symmetry gl(∞) to reproduce the space-time manifold. In this paper, we consider the generalization in which the space-time manifold emerges from a gauge symmetry algebra which is not necessarily gl(∞). We focus on the second nontrivial example after the toroidal compactification, the coset space G/H, and propose a specific infinite-dimensional symmetry which realizes the geometry. It consists of the gauge-algebra valued functions on the coset and Lorentzian generator pairs associated with the isometry. We show that the 0-dimensional gauge theory with the mass and Chern-Simons terms gives the gauge theory on the coset with scalar fields associated with H.


2001 ◽  
Vol 16 (11) ◽  
pp. 679-684
Author(s):  
JUNGJAI LEE ◽  
YEONG DEOK HAN

In D-dimensional gauge theory with a kinetic term based on p-form tensor gauge field, we introduce a gauge-invariant operator associated with the composite form from an electric (p - 1)-brane and a magnetic (q - 1)-brane in D = p + q + 1 space–time dimensions. By evaluating the partition function of this operator, we show that the expectation value of this operator gives rise to the topological contributions identical to those in gauge theory with a topological Chern–Simons BF term.


1986 ◽  
Vol 33 (8) ◽  
pp. 2262-2266 ◽  
Author(s):  
J. Barcelos-Neto ◽  
Ashok Das

Sign in / Sign up

Export Citation Format

Share Document