higgs scalar
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 1)

Particles ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 12-20
Author(s):  
R. K. Nesbet

The postulate of universal local Weyl scaling (conformal) symmetry modifies both general relativity and the Higgs scalar field model. The conformal Higgs model (CHM) acquires a cosmological effect that fits the observed accelerating Hubble expansion for redshifts z≤1 (7.33 Gyr) accurately with only one free constant parameter. Conformal gravity (CG) has recently been fitted to anomalous rotation data for 138 galaxies. Conformal theory explains dark energy and does not require dark matter, providing a viable alternative to the standard ΛCDM paradigm. The theory precludes a massive Higgs particle but validates a composite gauge field W2 with mass 125 GeV.


2021 ◽  
pp. 2150161
Author(s):  
Robert K. Nesbet

Recent cosmological observations and compatible theory offer an understanding of long-mysterious dark matter and dark energy. The postulate of universal conformal local Weyl scaling symmetry, without dark matter, modifies action integrals for both Einstein–Hilbert gravitation and the Higgs scalar field by gravitational terms. Conformal theory accounts for both observed excessive external galactic orbital velocities and for accelerating cosmic expansion. SU(2) symmetry-breaking is retained by the conformal scalar field, which does not produce a massive Higgs boson, requiring an alternative explanation of the observed LHC 125 GeV resonance. Conformal theory is shown here to be compatible with a massive neutral particle or resonance [Formula: see text] at 125 GeV, described as binary scalars [Formula: see text] and [Formula: see text] interacting strongly via quark exchange. Decay modes would be consistent with those observed at LHC. Massless scalar field [Formula: see text] is dressed by the [Formula: see text] field to produce Higgs Lagrangian term [Formula: see text] with the empirical value of [Formula: see text] known from astrophysics.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 640
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev ◽  
Abylaikhan Tlemisov

In this work, we study cylindrically symmetric solutions within SU(3) non-Abelian Proca theory coupled to a Higgs scalar field. The solutions describe tubes containing either the flux of a color electric field or the energy flux and momentum. It is shown that the existence of such tubes depends crucially on the presence of the Higgs field (there are no such solutions without this field). We examine the dependence of the integral characteristics (linear energy and momentum densities) on the values of the electromagnetic potentials at the center of the tube, as well as on the values of the coupling constant of the Higgs scalar field. The solutions obtained are topologically trivial and demonstrate the dual Meissner effect: the electric field is pushed out by the Higgs scalar field.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev

AbstractWe consider non-Abelian SU(3) Proca theory with a Higgs scalar field included. Cylindrically symmetric solutions describing classical tubes either with the flux of a longitudinal electric field or with the energy flux (and hence with nonzero momentum density) are obtained. It is shown that, in quantum Proca theory, there can exist tubes both with the flux of the longitudinal electric field and with the energy flux/momentum density simultaneously. An imaginary particle – Proca proton – in which ‘quarks’ are connected by tubes with nonzero momentum density is considered. It is shown that this results in the appearance of the angular momentum related to the presence of the non-Abelian electric and magnetic fields in the tube, and this angular momentum is a part of the Proca proton spin.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jean Thierry-Mieg

Abstract At the classical level, the SU(2/1) superalgebra offers a natural description of the elementary particles: leptons and quarks massless states, graded by their chirality, fit the smallest irreducible representations of SU(2/1). Our new proposition is to pair the left/right space-time chirality with the superalgebra chirality and to study the model at the one-loop quantum level. If, despite the fact that they are non-Hermitian, we use the odd matrices of SU(2/1) to minimally couple an oriented complex Higgs scalar field to the chiral Fermions, novel anomalies occur. They affect the scalar propagators and vertices. However, these undesired new terms cancel out, together with the Adler-Bell-Jackiw vector anomalies, because the quarks compensate the leptons. The unexpected and striking consequence is that the scalar propagator must be normalized using the anti-symmetric super-Killing metric and the scalar-vector vertex must use the symmetric d_aij structure constants of the superalgebra. Despite this extraordinary structure, the resulting Lagrangian is actually Hermitian.


Sign in / Sign up

Export Citation Format

Share Document