Expression of Ly-5 on yolk sac and fetal liver cells of the mouse

1980 ◽  
Vol 11-11 (1) ◽  
pp. 303-307 ◽  
Author(s):  
Dennis Triglia

Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 870-876 ◽  
Author(s):  
Xue-Song Liu ◽  
Xi-Hua Li ◽  
Yi Wang ◽  
Run-Zhe Shu ◽  
Long Wang ◽  
...  

Abstract Palladin was originally found up-regulated with NB4 cell differentiation induced by all-trans retinoic acid. Disruption of palladin results in neural tube closure defects, liver herniation, and embryonic lethality. Here we further report that Palld−/− embryos exhibit a significant defect in erythropoiesis characterized by a dramatic reduction in definitive erythrocytes derived from fetal liver but not primitive erythrocytes from yolk sac. The reduction of erythrocytes is accompanied by increased apoptosis of erythroblasts and partial blockage of erythroid differentiation. However, colony-forming assay shows no differences between wild-type (wt) and mutant fetal liver or yolk sac in the number and size of colonies tested. In addition, Palld−/− fetal liver cells can reconstitute hematopoiesis in lethally irradiated mice. These data strongly suggest that deficient erythropoiesis in Palld−/− fetal liver is mainly due to a compromised erythropoietic microenvironment. As expected, erythroblastic island in Palld−/− fetal liver was found disorganized. Palld−/− fetal liver cells fail to form erythroblastic island in vitro. Interestingly, wt macrophages can form such units with either wt or mutant erythroblasts, while mutant macrophages lose their ability to bind wt or mutant erythroblasts. These data demonstrate that palladin is crucial for definitive erythropoiesis and erythroblastic island formation and, especially, required for normal function of macrophages in fetal liver.





2014 ◽  
Vol 2 (1) ◽  
pp. 10-13
Author(s):  
R. Salyutin ◽  
D. Dombrowski ◽  
M. Komarov ◽  
N. Sokolov ◽  
S. Palyanitsya ◽  
...  

In the group of patients (n = 21, mean age 54 ± 5.8 years) with chronic lower limb ischemia stage IIB who were non-liable for reconstructiverestoration surgery, we have established positive clinical effects of local transplantation of human fetal liver progenitor cells. Complex examination following 1, 3, 6 and 12 months after transplantation included duplex scanning of limb arteries, x-ray contrast arteriography and laser Doppler flowmetry as well as measuring pain-free walking and evaluating life quality based on individual questionnaire data.Owing to the transplant “Cryopreserved human fetal liver progenitor cells” the patients demonstrated stable increase of life quality index and pain-free walking as well as improvement of general health allowing assign them to the group of patients with lower ischemia stage,  quicker social rehabilitation and lesser risk of disabling surgery (р < 0.05). Also, there were observations of improved microcirculation in the ischemic extremities owing to activation of endothelium-independent mechanisms of vasodilatation, reduced myotonus and neurotonus of the pre-capillaries and improved endothelium-dependent influence on the microhaemodynamic and, hence, an increased reserve capillary blood flow (p < 0.05).Analysis of the obtained results indicates prospects and effectiveness of using fetal liver cells transplantation in the patients who are not liable for surgical reconstruction of the vascular bed.



2012 ◽  
Vol 27 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Takashi Takezawa ◽  
Tamihide Matsunaga ◽  
Kaori Aikawa ◽  
Katsunori Nakamura ◽  
Shigeru Ohmori


Blood ◽  
2001 ◽  
Vol 97 (7) ◽  
pp. 1990-1998 ◽  
Author(s):  
Wolfgang E. Kaminski ◽  
Per Lindahl ◽  
Nancy L. Lin ◽  
Virginia C. Broudy ◽  
Jeffrey R. Crosby ◽  
...  

Abstract Platelet-derived growth factor (PDGF)-B and PDGF β-receptor (PDGFRβ) deficiency in mice is embryonic lethal and results in cardiovascular, renal, placental, and hematologic disorders. The hematologic disorders are described, and a correlation with hepatic hypocellularity is demonstrated. To explore possible causes, the colony-forming activity of fetal liver cells in vitro was assessed, and hematopoietic chimeras were demonstrated by the transplantation of mutant fetal liver cells into lethally irradiated recipients. It was found that mutant colony formation is equivalent to that of wild-type controls. Hematopoietic chimeras reconstituted with PDGF-B−/−, PDGFRβ−/−, or wild-type fetal liver cells show complete engraftment (greater than 98%) with donor granulocytes, monocytes, B cells, and T cells and display none of the cardiovascular or hematologic abnormalities seen in mutants. In mouse embryos, PDGF-B is expressed by vascular endothelial cells and megakaryocytes. After birth, expression is seen in macrophages and neurons. This study demonstrates that hematopoietic PDGF-B or PDGFRβ expression is not required for hematopoiesis or integrity of the cardiovascular system. It is argued that metabolic stress arising from mutant defects in the placenta, heart, or blood vessels may lead to impaired liver growth and decreased production of blood cells. The chimera models in this study will serve as valuable tools to test the role of PDGF in inflammatory and immune responses.



2007 ◽  
Vol 30 (11) ◽  
pp. 2091-2097 ◽  
Author(s):  
Masataka Maruyama ◽  
Tamihide Matsunaga ◽  
Eri Harada ◽  
Shigeru Ohmori


2012 ◽  
Vol 27 (6) ◽  
pp. 653-657 ◽  
Author(s):  
Tamihide Matsunaga ◽  
Masataka Maruyama ◽  
Tsutomu Matsubara ◽  
Kiyoshi Nagata ◽  
Yasushi Yamazoe ◽  
...  


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 495-500
Author(s):  
JE Barker

Two types of erythroid colonies were generated in vitro from sheep fetal liver cells. The first type consisted of single colonies of 8–256 cells that were well hemoglobinized by 4 days; these are thought to originate from CFU-E. The second type consisted of macroscopic colonies composed of several subcolonies that matured between days 3 and 8 in vitro. At maturity, each contained 256 to > 1000 cells that formed a discrete macroscopic cluster. The macroscopic colonies, not previously described in sheep, are thought to be derived from BFU-E. The characteristics of sheep BFU-E were defined and the production of fetal hemoglobin (HbF, alpha 1, gamma 2) and HbC (alpha 2 beta 2) was compared in colonies derived from CFU-E or BFU-E. Bursts developed at erythropoietin (epo) concentrations as low as 0.1 U/ml, although the number observed increased with epo concentration up to 10 U/ml. The number of bursts observed was approximately proportional to the number of cells plated. As shown by thymidine suicide, approximately 50% of both the BFU e and CFU-E were in S-phase when obtained from the fetus. BFU-E were smaller and partially separable from CFU-E after sedimentation at unit gravity. The beta c/gamma synthetic ratio in colonies derived from BFU-E was greater than in CFU-E-derived colonies. These data suggest that the capacity for generation of erythroblasts making HbC is greater in the earlier or more primitive erythroid stem cells in fetal liver.





Author(s):  
Gayle C. Bosma ◽  
David M. Gibson ◽  
R. Phillip Custer ◽  
Melvin J. Bosma


Sign in / Sign up

Export Citation Format

Share Document