Brain cholinesterase activities of birds from forests sprayed with trichlorfon (Dylox) and carbaryl (Sevin-4-oil)

1977 ◽  
Vol 17 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Joseph G. Zinkl ◽  
Charles J. Henny ◽  
Lawrence R. DeWeese
2011 ◽  
Vol 4 (3) ◽  
pp. 144-148 ◽  
Author(s):  
Ashraf Alias ◽  
Muna Al-Zubaidy ◽  
Yaareb Mousa ◽  
Fouad Mohammad

Plasma and whole brain cholinesterase activities in three wild bird species in Mosul, IRAQ:In vitroinhibition by insecticidesPlasma and brain cholinesterase activities were determined in three wild bird species to assess their exposure to organophosphate and carbamate insecticides which are used in agriculture and public health. In the present study, we used an electrometric method for measurement of cholinesterase activities in the plasma and whole brain of three indigenous wild birds commonly found in northern Iraq. The birds used were apparently healthy adults of both sexes (8 birds/species, comprising 3-5 from each sex) of quail (Coturnix coturnix), collard dove (Streptopelia decaocto) and rock dove (Columba livia gaddi), which were captured in Mosul, Iraq. The mean respective cholinesterase activities (Δ pH/30 minutes) in the plasma and whole brain of the birds were as follows: quail (0.96 and 0.29), collard dove (0.97and 0.82) and rock dove (1.44 and 1.42). We examined the potential susceptibility of the plasma or whole brain cholinesterases to inhibition by selected insecticides. The technique ofin vitrocholinesterase inhibition for 10 minutes by the organophosphate insecticides dichlorvos, malathion and monocrotophos (0.5 and 1.0 μM) and the carbamate insecticide carbaryl (5 and10 μM) in the enzyme reaction mixtures showed significant inhibition of plasma and whole brain cholinesterase activities to various extents. The data further support and add to the reported cholinesterase activities determined electrometrically in wild birds in northern Iraq. The plasma and whole brain cholinesterases of the birds are highly susceptible to inhibition by organophosphate and carbamate insecticides as determined by the described electrometric method, and the results further suggest the usefulness of the method in biomonitoring wild bird cholinesterases.


2011 ◽  
Vol 62 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Muna Al-Zubaidy ◽  
Yaareb Mousa ◽  
Mohammad Hasan ◽  
Fouad Mohammad

Acute Toxicity of Veterinary and Agricultural Formulations of Organophosphates Dichlorvos and Diazinon in ChicksFormulation components of organophosphate insecticidal preparations might affect their toxic action in animals. The objective of this study was to examine and compare the acute toxicity and cholinesterase inhibition in seven to 14-day-old chicks dosed orally with dichlorvos and diazinon in standard veterinary and agricultural formulations. The acute (24 h) oral median lethal doses (LD50) of the formulations were determined using the up-and-down method. Respective LD50 of dichlorvos of the veterinary and agricultural formulations in chicks were 11.1 mg kg-1 and 6.51 mg kg-1 and those of diazinon 6.4 mg kg-1 and 6.7 mg kg-1. Plasma and brain cholinesterase activities were measured by electrometry after in vivo and in vitro exposure to organophosphates. The chicks showed signs of cholinergic toxicosis within one hour of dosing. Dichlorvos (8 mg kg-1) and diazinon (4 mg kg-1) in the veterinary and agricultural formulation significantly reduced both plasma and brain cholinesterase activities in the chicks. The veterinary formulation of dichlorvos reduced plasma ChE by 60 % and agricultural by 40 % and brain ChE by 93 % and 87 %, respectively. In contrast, ChE inhibition by diazinon in the agricultural formulation of diazinon was stronger than by the veterinary formulation; 72 % vs. 64 % in plasma and 97 % vs. 80 % in the brain, respectively. The highest in vitro inhibitions were observed with dichlorvos in the agricultural formulation (50 %) in the brain samples and with diazinon in the agricultural formulation (52 %) in the plasma samples. While they exist, differences between formulations cannot be taken as a rule and further investigations should inventory the toxicity of standard veterinary and agricultural organophosphate formulations in addition to the known data for pure forms.


2015 ◽  
Vol 238 (2) ◽  
pp. S59
Author(s):  
H. Yi ◽  
J.-H. Bang ◽  
J.-H. Seo ◽  
Y.-I. Park ◽  
J.-Y. Song ◽  
...  

2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Ricardo Christ ◽  
Aleksandro Schafer Da Silva ◽  
Mateus Eloir Grabriel ◽  
Luan Cleber Henker ◽  
Renan Augusto Cechin ◽  
...  

  Background: Nitrate and nitrite poisoning is associated with pasture intake that has high nitrate levels and leads to acute methemoglobinemia. Pasture may accumulate nitrate under certain conditions, such as excessively fertilized soil or en­vironmental conditions that enhance the N absorption (rain preceded by a period of drought). After ingestion of plants, this substrate reaches the rumen and, in physiological conditions, is reduced to nitrite and afterward to ammonia. The aim of this study was to evaluate changes in cholinesterase activities and oxidative stress caused by subclinical poisoning for nitrate and nitrite in cattle fed with Pennisetum glaucum in three different fertilization schemes. Materials, Methods & Results: In order to perform the experimental poisoning, the pasture was cultivated in three dif­ferent paddocks: with nitrogen topdressing (urea; group 1), organic fertilizer (group 2) or without fertilizer (group 3; control). Nitrate accumulation in forage was evaluated by the diphenylamine test. After food fasting of 12 h, nine bovine were randomly allocated to one of the experimental groups and fed with fresh forage (ad libitum) from respective pad­dock. In different time points from beginning of pasture intake (0, 2, 4, 6 and 9 h) heart rate and respiratory frequency were assessed, as well as mucous membrane color and behavioral changes. Blood samples from jugular vein into vials with and without anticoagulant were collected. From blood samples, serum nitrite levels, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme activity were evaluated, as well as oxidative stress through the following param­eters: levels of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS), beyond the antioxidant system by enzyme activity measurement of catalase (CAT) and superoxide dismutase (SOD). The diphenylamine test was positive to group 1 and 2, so that the pasture presented 3.16 mg/kg, 2.98 mg/kg and 1.67 mg/kg of nitrate for group 1, 2 and 3, respectively. In addition, cows from group 1 demonstrated increased (P < 0.05) nitrite levels in serum, compared to other groups, and greater heart rate after 9 h (P < 0.05). The AChE and BChE activity in group 1 showed significant increase (P < 0.05) at 4 and 6 h (AChE), and 4 and 9 h (BChE) compared to group 3. Also, NOx levels were lower at 6 and 9 h (P < 0.05) and at 9 h (P < 0.05) for animals of group 1 and 2, respectively, when compared to group 3. Furthermore, in the group 1 levels of ROS and TBARS were significantly higher (P < 0.05) after 2 and 4 h, and 6 and 9 h compared to other groups, respectively. The CAT activity increased significantly (P < 0.05) with 2 and 4 h of the experiment, but on the other hand, decreased at 6 and 9 h in group 1. Nevertheless, the animals from group 2 presented only a significant reduction in this enzyme activity at 9 h. Furthermore, SOD activity was reduced in animals of groups 1 (P < 0.05) at 4, 6 and 9 h, compared to other groups. Discussion: It was concluded that the nitrate and nitrite poisoning by pasture intake cultivated and fertilized with urea leads to increased levels of serum nitrite, as well as the cholinesterase activity and causes oxidative stress in cattle. It is conjectured that the cholinesterase activity and oxidative stress may assist in understanding the pathophysiology of changes caused by poisoning.Keywords: plant toxicology, poisoning, methemoglobin, cholinergic system, oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document