peromyscus leucopus
Recently Published Documents


TOTAL DOCUMENTS

590
(FIVE YEARS 24)

H-INDEX

43
(FIVE YEARS 3)

Author(s):  
Megan A Linske ◽  
Scott C Williams ◽  
Kirby C Stafford ◽  
Andrew Y Li

Abstract Integrated tick management (ITM) is a comprehensive strategy used to reduce presence of ticks and their associated pathogens. Such strategies typically employ a combination of host and non-host targeted treatments which often include fipronil-based, rodent-targeted bait boxes. Bait boxes target small-bodied rodents, specifically white-footed mice (Peromyscus leucopus Rafinesque) that not only play a crucial role in the blacklegged tick (Ixodes scapularis Say (Ixodida: Ixodidae)) life cycle, but also in the transmission of numerous pathogens, primarily Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner (Spirochaetales: Spirochaetaceae), the causal agent of Lyme disease. This study aimed to determine the effect of bait box deployment configuration on tick burden reduction while also further exploring bait consumption and P. leucopus abundances as measures of bait box usage and effectiveness. Boxes were deployed on nine properties within each of six neighborhoods (n = 54) in two different configurations: grid and perimeter. Multiple factors were analyzed as potential predictors for reduction in tick burdens using a backward stepwise selection procedure. Results confirmed the perimeter configuration was a more effective deployment strategy. In addition, overall P. leucopus abundance was a significant predictor of tick burden reduction while bait consumption was not. These findings not only further support the recommended perimeter deployment configuration but provide insight into effective utilization in areas of high P. leucopus abundance. The identification of this significant relationship, in addition to configuration, can be utilized by vector control professionals and homeowners to make informed decisions on bait box placement to make sustained impacts on the I. scapularis vector and associated pathogens within an ITM framework.


Author(s):  
Francesca I. Rubino ◽  
Kelly Oggenfuss ◽  
Richard S. Ostfeld

Physical impairments are widely assumed to reduce the viability of individual animals, but their impacts on individuals within natural populations of vertebrates are rarely quantified. By monitoring wild populations of white-footed mice over 26 years, we assessed whether missing or deformed limbs, tail or eyes influenced the survival, body mass, movement and ectoparasite burden of their bearers. Of the 27 244 individuals monitored, 543 (2%) had visible physical impairments. Persistence times (survival) were similar between mice with and without impairments. Mice with eye and tail impairments had 5% and 6% greater mass, respectively, than unimpaired mice. Mice with tail impairments had larger home ranges than did unimpaired mice. Burdens of black-legged ticks ( Ixodes scapularis ) were higher among mice with tail and limb impairments while burdens of bot fly larvae ( Cuterebra ) were higher among mice with cataracts compared to mice without impairments. Our findings do not support the presupposition that physical impairments reduce viability in their bearers and are inconsistent with the devaluation of impaired individuals that pervaded early thinking in evolutionary biology.


Therya ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 609
Author(s):  
Jessica E. Light ◽  
Leila Siciliano-Martina ◽  
Emma G. Dohnalik ◽  
Grace Vielleux ◽  
David J. Hafner ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
David M. Poché ◽  
Kelsey Dawson ◽  
Batchimeg Tseveenjav ◽  
Richard M. Poché

Abstract Background Lyme disease, caused primarily by Borrelia burgdorferi sensu stricto, is the most prevalent vector-borne disease in the United States. Treatment of rodent pathogen reservoirs with an oral acaricide may suppress the production of infected host-seeking ticks posing a risk for human infection. A previous study showed that an oral fipronil bait effectively controlled larval Ixodes scapularis ticks on white-footed mice (Peromyscus leucopus) up to 15 days post-bait exposure. The present study expands upon this finding by exposing group-housed white-footed mice to fipronil bait under simulated field conditions prior to tick infestation. Methods Mice (n = 80) were housed in groups of 10 within large enclosures and offered a choice between fipronil bait within a commercial bait station and an alternative diet. The mice were assigned to two treatment groups and two control groups to undergo bait exposure durations of either 24 h (reduced) or 168 h (extended). Groups were further differentiated by the time point post-bait exposure when larval ticks were applied to mice within feeding capsules (reduced day 1, day 15; extended day 21, day 35). For 4 days post-tick introduction, attached larvae were observed by microscopy and replete larvae were recovered. Replete larvae were monitored for molting success. Plasma was collected from all treatment group mice to obtain fipronil plasma concentrations (CP). Results The fipronil bait (0.005% fipronil) was palatable and controlled larval ticks on white-footed mice when presented under simulated field conditions. Efficacy in preventing attached larvae from feeding to repletion was 100% (day 1), 89.0% (day 15), 85.8% (day 21), and 75.2% (day 35). When also considering molting success, the fipronil bait prevented 100% (day 1), 91.1% (day 15), 91.7% (day 21), and 82.5% (day 35) of larvae attaching to mice from molting. The mean CP per mouse was 191.5 ng/ml (day 1), 29.4 ng/ml (day 15), 10.6 ng/ml (day 21), and 1.0 ng/ml (day 35). Conclusions The results suggest that fipronil bait will be consumed by white-footed mice in the presence of an alternative diet, and effectively control larval ticks on treated mice. A field trial is needed to confirm the results of this study. Low-dose fipronil bait may provide a cost-effective means of controlling blacklegged ticks to be integrated into tick management programs. Graphical Abstract


2021 ◽  
Author(s):  
Anthony D Long ◽  
Alan Barbour ◽  
Phillip N Long ◽  
Vanessa J Cook ◽  
Arundhati Majumder

Although Peromyscus leucopus (deermouse) is not considered a genetic model system, its genus is well suited for addressing several questions of biologist interest, including the genetic bases of longevity, behavior, physiology, adaptation, and its ability to serve as a disease vector. Here we explore a diversity outbred approach for dissecting complex traits in Peromyscus leucopus, a non-traditional genetic model system. We take advantage of a closed colony of deer-mice founded from 38 individuals between 1982 and 1985 and subsequently maintained for 35+ years (~40-60 generations). From 405 low-pass (~1X) short-read sequenced deermice we accurately imputed genotypes at 17,751,882 SNPs. Conditional on observed genotypes for a subset of 297 individuals, simulations were conducted in which a QTL contributes 5% to a complex trait under three different genetic models. The power of either a haplotype- or marker-based statistical test was estimated to be 15-25% to detect the hidden QTL. Although modest, this power estimate is consistent with that of DO/HS mice and rat experiments for an experiment with ~300 individuals. This limitation in QTL detection is mostly associated with the stringent significance threshold required to hold the genome-wide false positive rate low, as in all cases we observe considerable linkage signal at the location of simulated QTL, suggesting a larger panel would exhibit greater power. For the subset of cases where a QTL was detected, localization ability appeared very desirable at ~1-2Mb. We finally carried out a GWAS on a demonstration trait, bleeding time. No tests exceeded the threshold for genome-wide significance, but one of four suggestive regions co-localizes with Von Willebrand factor. Our work suggests that complex traits can be dissected in founders-unknown P. leucopus colony mice in much the same manner as founders-known DO/HS mice and rats, with genotypes obtained from low pass sequencing data. Our results further suggest that the DO/HS approach can be powerfully extended to any system in which a founders-unknown closed colony has been maintained for several dozen generations.


Therya ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 369-387
Author(s):  
Jessica E. Light ◽  
Lelila Siciliano-Martina ◽  
Emma Dohlanik ◽  
Grace Vielleux ◽  
David Hafner ◽  
...  

The white-footed deer mouse (Peromyscus leucopus) and the North American deer mouse (P. maniculatus) are widely distributed throughout North America, often with overlapping distributions. These species are believed to be sympatric east of the Balcones fault zone in Texas, but records from natural history collections indicate that P. maniculatus is not common from this region. Given that these two species are notoriously difficult to differentiate morphologically, it is possible that specimens have been incorrectly identified and that P. maniculatus may be rare or not present in East Texas. This study aims to determine if P. leucopus and P. maniculatus can be differentiated morphologically east of the Balcones fault zone in Texas. Cranial and external characters from genetically identified specimens representing each species were analyzed using traditional and geometric morphometric methods. Morphological analyses revealed that genetically identified specimens of P. leucopus and P. maniculatus from east of the Balcones fault zone could be differentiated using a suite of morphological characters. Many of the specimens of P. leucopus used in this study were originally misidentified, suggesting that P. maniculatus is rare in East Texas.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Gabriela Balderrama-Gutierrez ◽  
Ana Milovic ◽  
Vanessa J. Cook ◽  
M. Nurul Islam ◽  
Youwen Zhang ◽  
...  

ABSTRACT Animals that are competent reservoirs of zoonotic pathogens commonly suffer little morbidity from the infections. To investigate mechanisms of this tolerance of infection, we used single-dose lipopolysaccharide (LPS) as an experimental model of inflammation and compared the responses of two rodents: Peromyscus leucopus, the white-footed deermouse and reservoir for the agents of Lyme disease and other zoonoses, and the house mouse Mus musculus. Four hours after injection with LPS or saline, blood, spleen, and liver samples were collected and subjected to transcriptome sequencing (RNA-seq), metabolomics, and specific reverse transcriptase quantitative PCR (RT-qPCR). Differential expression analysis was at the gene, pathway, and network levels. LPS-treated deermice showed signs of sickness similar to those of exposed mice and had similar increases in corticosterone levels and expression of interleukin 6 (IL-6), tumor necrosis factor, IL-1β, and C-reactive protein. By network analysis, the M. musculus response to LPS was characterized as cytokine associated, while the P. leucopus response was dominated by neutrophil activity terms. In addition, dichotomies in the expression levels of arginase 1 and nitric oxide synthase 2 and of IL-10 and IL-12 were consistent with type M1 macrophage responses in mice and type M2 responses in deermice. Analysis of metabolites in plasma and RNA in organs revealed species differences in tryptophan metabolism. Two genes in particular signified the different phenotypes of deermice and mice: the Slpi and Ibsp genes. Key RNA-seq findings for P. leucopus were replicated in older animals, in a systemic bacterial infection, and with cultivated fibroblasts. The findings indicate that P. leucopus possesses several adaptive traits to moderate inflammation in its balancing of infection resistance and tolerance. IMPORTANCE Animals that are natural carriers of pathogens that cause human diseases commonly manifest little or no sickness as a consequence of infection. Examples include the deermouse, Peromyscus leucopus, which is a reservoir for Lyme disease and several other disease agents in North America, and some types of bats, which are carriers of viruses with pathogenicity for humans. Mechanisms of this phenomenon of infection tolerance and entailed trade-off costs are poorly understood. Using a single injection of lipopolysaccharide (LPS) endotoxin as a proxy for infection, we found that deermice differed from the mouse (Mus musculus) in responses to LPS in several diverse pathways, including innate immunity, oxidative stress, and metabolism. Features distinguishing the deermice cumulatively would moderate downstream ill effects of LPS. Insights gained from the P. leucopus model in the laboratory have implications for studying infection tolerance in other important reservoir species, including bats and other types of wildlife.


Author(s):  
Danielle M Tufts ◽  
Maria A Diuk-Wasser

Abstract Background Babesia microti, a malaria-like pathogen, is increasing in mammal and human populations in endemic areas and is unlikely to be the sole result of horizontal pathogen transmission. Methods Peromyscus leucopus mice, natural reservoir hosts, were infected via Ixodes scapularis nymphs. Infected parental females (n = 6) produced F1 offspring (n = 36) that were screened for B. microti using quantitative PCR. Xenodiagnostic larvae were fed on infected offspring to determine horizontal transmission and pathogen viability. Fifty engorged larvae were screened; the rest were allowed to molt and then screened to determine transstadial transmission. Infected F1 generation offspring were placed in breeding groups, producing 34 F2 offspring and screened for B. microti infection. Chronic infection was monitored in parental females since time of initial vector infection. Results Vertical transmission of B. microti was 74% efficient in offspring born in the first 6 months. Horizontal transmission occurred in larvae (61% prevalence) and molted nymphs (58% prevalence); these nymphs were able to infect susceptible hosts. F2 generation offspring infection prevalence was 38%. Chronic infection persisted for 1 year in some adults. Conclusions These results demonstrate that vertical transmission is an important nonvector-mediated pathway of B. microti transmission in the natural reservoir host.


PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0231801
Author(s):  
Ana Milovic ◽  
Khalil Bassam ◽  
Hanjuan Shao ◽  
Ioulia Chatzistamou ◽  
Danielle M. Tufts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document