The role of metal ions in chemical evolution: Polymerization of alanine and glycine in a cation-exchanged clay environment

1979 ◽  
Vol 13 (4) ◽  
pp. 281-286 ◽  
Author(s):  
James G. Lawless ◽  
Nissim Levi
2018 ◽  
Vol 54 (6) ◽  
pp. 78-93
Author(s):  
V. V. Grubinko ◽  
O. I. Bodnar ◽  
A. I. Lutsiv ◽  
G. B. Viniarska
Keyword(s):  

2021 ◽  
Vol 22 (12) ◽  
pp. 6458
Author(s):  
Aleksandra Pieniężna ◽  
Weronika Witak ◽  
Aneta Szymańska ◽  
Justyna Brasuń

In this paper, we present studies on the influence of the disulfide bridge on the copper (II) ions’ binding abilities by the cyclic His4-peptide. The studied ligand HKHPHRHC-S-S-C consists of nine amino acids. The cyclic structure was obtained through a disulfide bridge between two cysteinyl groups. Moreover, this peptide is characterized by the presence of four His residues in the sequence, which makes it an interesting ligand for transition metal ions. The potentiometric and spectroscopic (UV-Vis spectroscopy and circular dichroism spectroscopy (CD)) studies were carried out in various molar ligand to metal ratios: 2:1, 1:1, and 1:2, in the pH range of 2.5–11 at 25 °C. The results showed that the cyclic His4-peptide promotes dinuclear complexes in each of these systems and forms the final dinuclear species with the {NIm, 3N-amide}{NIm, 3N-amide} coordination mode. The obtained data shows that cyclization by the formation of the disulfide bond has an impact on the peptide chain flexibility and appearance of additional potential donors for metal ions and influences the copper (II) ions’ coordination.


2021 ◽  
Vol 20 (2) ◽  
pp. 142-149
Author(s):  
Avnish Kumar Arora ◽  
Pankaj Kumar

AbstractStudies on the interaction of biomolecules with inorganic compounds, mainly mineral surfaces, are of great concern in identifying their role in chemical evolution and origins of life. Metal oxides are the major constituents of earth and earth-like planets. Hence, studies on the interaction of biomolecules with these minerals are the point of concern for the study of the emergence of life on different planets. Zirconium oxide is one of the metal oxides present in earth's crust as it is a part of several types of rocks found in sandy areas such as beaches and riverbeds, e.g. pebbles of baddeleyite. Different metal oxides have been studied for their role in chemical evolution but no studies have been reported about the role of zirconium oxide in chemical evolution and origins of life. Therefore, studies were carried out on the interaction of ribonucleic acid constituents, 5′-CMP (cytidine monophosphate), 5′-UMP (uridine monophosphate), 5′-GMP (guanosine monophosphate) and 5′-AMP (adenosine monophosphate), with zirconium oxide. Synthesized zirconium oxide particles were characterized by using vibrating sample magnetometer, X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy. Zirconia particles were in the nanometre range, from 14 to 27 nm. The interaction of zirconium oxide with ribonucleic acid constituents was performed in the concentration range of 5 × 10−5–300 × 10−5 M. Interaction studies were carried out in three mediums; acidic (pH 4.0), neutral (pH 7.0) and basic (pH 9.0). At neutral pH, maximum interaction was observed. The interaction of zirconium oxide with 5′-UMP was 49.45% and with 5′-CMP 67.98%, while with others it was in between. Interaction studies were Langmurian in nature. Xm and KL values were calculated. Infrared spectral studies of ribonucleotides, metal oxide and ribonucleotide–metal oxide adducts were carried out to find out the interactive sites. It was observed that the nitrogen base and phosphate moiety of ribonucleotides interact with the positive charge surface of metal oxide. SEM was also carried out to study the adsorption. The results of the present study favour the important role of zirconium oxide in concentrating the organic molecules from their dilute aqueous solutions in primeval seas.


2014 ◽  
Vol 76 ◽  
pp. S124
Author(s):  
Juan Du ◽  
Brett A Wagner ◽  
Garry R Buettner ◽  
Joseph J Cullen

1986 ◽  
Vol 128 (1) ◽  
pp. 17-31 ◽  
Author(s):  
J. M. Greenberg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document