Glycosylation of endogenous protein(s) of the rough and smooth microsomes by a lipid sugar intermediate

1977 ◽  
Vol 16 (2-3) ◽  
pp. 171-176 ◽  
Author(s):  
V. Idoyaga Vargas ◽  
H. Carminatti
Keyword(s):  
1982 ◽  
Vol 202 (1) ◽  
pp. 87-95 ◽  
Author(s):  
V Idoyaga-Vargas ◽  
H Carminatti

Neuronal perikarya were isolated from rat cerebral cortex at different stages of postnatal development. Membranes sedimenting at 100000 g were obtained from these neurons to study several glycosyltransferases of the dolichol pathway. Enzyme activities from stages before and during synapse formation were compared (days 5 and 15 respectively). Dolichyl diphosphate (Dol-P-P) N-acetylglucosamine, dolichyl phosphate mannose and dolichyl phosphate glucose synthases and the enzymes catalysing Dol-P-P-GlcNAc2Man9Glc3 formation were higher at day 15 of postnatal development. The glycosyl transfer of the latter compound to endogenous protein(s) as well as to a dinitrophenyl-heptapeptide was also measured. The activity was higher at day 15. Furthermore, the activity of dolichyl phosphate mannose synthase was also measured during the time when the number of synapses ceased to increase (day 36) and in the adult stage. The activity of dolichyl phosphate mannose synthase was higher at day 36 than at day 15, and declined in the adult stage. From these results it may be concluded that there is an increase in the glycosylation of asparagine-type glycoproteins during synapse formation in the neurons of the cerebral cortex.


1979 ◽  
Vol 26 (2) ◽  
Author(s):  
Victor Idoyaga-Vargas ◽  
Mirta Perelmuter ◽  
Oscar Burrone ◽  
H�ctor Carminatti

Science ◽  
2012 ◽  
Vol 336 (6080) ◽  
pp. 470-473 ◽  
Author(s):  
D. Seth ◽  
A. Hausladen ◽  
Y.-J. Wang ◽  
J. S. Stamler
Keyword(s):  
E Coli ◽  

1994 ◽  
Vol 14 (5) ◽  
pp. 3022-3029 ◽  
Author(s):  
M G Goebl ◽  
L Goetsch ◽  
B Byers

The transition from G1 to S phase of the cell cycle in Saccharomyces cerevisiae requires the activity of the Ubc3 (Cdc34) ubiquitin-conjugating enzyme. S. cerevisiae cells lacking a functional UBC3 (CDC34) gene are able to execute the Start function that initiates the cell cycle but fail to form a mitotic spindle or enter S phase. The Ubc3 (Cdc34) enzyme has previously been shown to catalyze the attachment of multiple ubiquitin molecules to model substrates, suggesting that the role of this enzyme in cell cycle progression depends on its targeting an endogenous protein(s) for degradation. In this report, we demonstrate that the Ubc3 (Cdc34) protein is itself a substrate for both ubiquitination and phosphorylation. Immunochemical localization of the gene product to the nucleus renders it likely that the relevant substrates similarly reside within the nucleus.


Author(s):  
G. Lembcke ◽  
F. Zemlin

The thermoacidophilic archaebacterium Sulfolobus spec. B12 , which is closely related to Sulfolobus solfataricus , possesses a regularly arrayed surface protein (S-layer), which is linked to the plasma membrane via spacer elements spanning a distinct interspace of approximately 18 nm. The S-layer has p3-Symmetry and a lattice constant of 21 nm; three-dimensional reconstructions of negatively stained fragments yield a layer thickness of approximately 6-7 nm.For analysing the molecular architecture of Sulfolobus surface protein in greater detail we use aurothioglucose(ATG)-embedding for specimen preparation. Like glucose, ATG, is supposed to mimic the effect of water, but has the advantage of being less volatile. ATG has advantages over glucose when working with specimens composed exclusively of protein because of its higher density of 2.92 g cm-3. Because of its high radiation sensitivity electromicrographs has to be recorded under strict low-dose conditions. We have recorded electromicrographs with a liquid helium-cooled superconducting electron microscope (the socalled SULEIKA at the Fritz-Haber-lnstitut) with a specimen temperature of 4.5 K and with a maximum dose of 2000 e nm-2 avoiding any pre-irradiation of the specimen.


1999 ◽  
Vol 81 (04) ◽  
pp. 527-531 ◽  
Author(s):  
U. Kjellberg ◽  
N.-E. Andersson ◽  
S. Rosén ◽  
L. Tengborn ◽  
M. Hellgren

SummaryForty-eight healthy pregnant women were studied prospectively and longitudinally. Blood sampling was performed at 10-15, 23-25, 32-34 and 38-40 weeks of gestation, within one week and at eight weeks postpartum. Classic and modified activated protein C ratio decreased as pregnancy progressed. In the third trimester 92% of the ratios measured with the classic test were above the lower reference level whereas all modified test ratios were normal. Slight activation of blood coagulation was shown with increased levels of prothrombin fragment 1+2, soluble fibrin and D-dimer. Fibrinogen, factor VIII and plasminogen activator inhibitor type 1 and type 2 increased. Protein S and tissue plasminogen activator activity decreased. Protein C remained unchanged. No correlation was found between the decrease in classic APC ratio and changes in factor VIII, fibrinogen, protein S, prothrombin fragment 1+2 or soluble fibrin, nor between the increase in soluble fibrin and changes in prothrombin fragment 1+2, fibrinogen and D-dimer.


Sign in / Sign up

Export Citation Format

Share Document