fatty acylation
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 18)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 65 ◽  
pp. 109-117
Author(s):  
Emma H. Garst ◽  
Tandrila Das ◽  
Howard C. Hang

iScience ◽  
2021 ◽  
pp. 103220
Author(s):  
Xinxin Gao ◽  
Ann De Mazière ◽  
Rhiannon Beard ◽  
Judith Klumperman ◽  
Rami N. Hannoush

Open Biology ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 210228
Author(s):  
Marilyn D. Resh

Fatty acylation is a widespread form of protein modification that occurs on specific intracellular and secreted proteins. Beyond increasing hydrophobicity and the affinity of the modified protein for lipid bilayers, covalent attachment of a fatty acid exerts effects on protein localization, inter- and intramolecular interactions and signal transduction. As such, research into protein fatty acylation has been embraced by an extensive community of biologists. This special issue highlights advances at the forefront of the field, by focusing on two families of enzymes that catalyse post-translational protein fatty acylation, zDHHC palmitoyl acyltransferases and membrane-bound O-acyl transferases, and signalling pathways regulated by their fatty acylated protein substrates. The collected contributions catalogue the tremendous progress that has been made in enzyme and substrate identification. In addition, articles in this special issue provide insights into the pivotal functions of fatty acylated proteins in immune cell, insulin and EGF receptor-mediated signalling pathways. As selective inhibitors of protein fatty acyltransferases are generated, the future holds great promise for therapeutic targeting of fatty acyltransferases that play key roles in human disease.


Author(s):  
Garrison Komaniecki ◽  
Hening Lin

Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Miao Wang ◽  
Hening Lin

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Author(s):  
Apoorva Pradhan ◽  
Daniel Lu ◽  
Laura Parisi ◽  
Shichen Shen ◽  
Ilyas Berhane ◽  
...  

<p>Necroptosis is a form of regulated cell death that is characterized by membrane permeabilization. This permeabilization is responsible for the inflammatory properties of necroptosis and is critical for disease states involving this process. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that mixed lineage kinase like protein (MLKL) and phosphoMLKL, key proteins for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of the clathrin-mediated endocytosis increases cell viability during necroptosis, likely by removing phosphoMLKL from the plasma membrane. <br></p>


2020 ◽  
pp. jbc.RA120.015701
Author(s):  
Martin Ian P. Malgapo ◽  
Jenelle M. Safadi ◽  
Maurine E. Linder

Members of the metallo-β-lactamase (MBL) superfamily of enzymes harbor a highly conserved αββα MBL-fold domain and were first described as inactivators of common β-lactam antibiotics. In humans, these enzymes have been shown to exhibit diverse functions, including hydrolase activity towards amides, esters, and thioesters. An uncharacterized member of the human MBL family, MBLAC2, was detected in multiple palmitoylproteomes, identified as a zDHHC20 S-acyltransferase interactor, and annotated as a potential thioesterase. In this study, we confirmed that MBLAC2 is palmitoylated and identified the likely S-palmitoylation site as Cys254. S-palmitoylation of MBLAC2 is increased in cells when expressed with zDHHC20 and MBLAC2 is a substrate for purified zDHHC20 in vitro. To determine its biochemical function, we tested the ability of MBLAC2 to hydrolyze a variety of small molecules and acylprotein substrates. MBLAC2 has acyl-CoA thioesterase activity with kinetic parameters and acyl-CoA selectivity comparable to acyl-CoA thioesterase 1 (ACOT1). Two predicted zinc-binding residues, Asp87 and His88 are required for MBLAC2 hydrolase activity. Consistent with a role in fatty acid metabolism in cells, MBLAC2 was cross-linked to a photoactivatable fatty acid in a manner that was independent of its S-fatty acylation at Cys254. Our study adds to previous investigations demonstrating the versatility of the MBL-fold domain in supporting a variety of enzymatic reactions.


2020 ◽  
Author(s):  
Apoorva Pradhan ◽  
Daniel Lu ◽  
Laura Parisi ◽  
Shichen Shen ◽  
Ilyas Berhane ◽  
...  

<p>Necroptosis is a form of regulated cell death that is characterized by membrane permeabilization. This permeabilization is responsible for the inflammatory properties of necroptosis and is critical for disease states involving this process. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that mixed lineage kinase like protein (MLKL) and phosphoMLKL, key proteins for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of the clathrin-mediated endocytosis increases cell viability during necroptosis, likely by removing phosphoMLKL from the plasma membrane. <br></p>


2020 ◽  
Vol 244 ◽  
pp. 118811 ◽  
Author(s):  
Lang Huang ◽  
Qiong Wu ◽  
Qingwen Wang ◽  
Rongxian Ou ◽  
Michael Wolcott

2020 ◽  
Vol 56 (89) ◽  
pp. 13880-13883
Author(s):  
Yumeng Li ◽  
Shushu Wang ◽  
Yanchi Chen ◽  
Manjia Li ◽  
Xiaoshu Dong ◽  
...  

Chemically installed fatty-acylation recapitulates the function of S-palmitoylation in regulating protein membrane affinity and signaling in live cells.


Sign in / Sign up

Export Citation Format

Share Document