The information content of high-frequency seismograms and the near-surface geologic structure of “hard rock” recording sites

1988 ◽  
Vol 128 (1-2) ◽  
pp. 333-363 ◽  
Author(s):  
Edward Cranswick
Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Christiaan P. J. de Kock ◽  
Jean Pie ◽  
Anton W. Pieneman ◽  
Rebecca A. Mease ◽  
Arco Bast ◽  
...  

AbstractDiversity of cell-types that collectively shape the cortical microcircuit ensures the necessary computational richness to orchestrate a wide variety of behaviors. The information content embedded in spiking activity of identified cell-types remain unclear to a large extent. Here, we recorded spike responses upon whisker touch of anatomically identified excitatory cell-types in primary somatosensory cortex in naive, untrained rats. We find major differences across layers and cell-types. The temporal structure of spontaneous spiking contains high-frequency bursts (≥100 Hz) in all morphological cell-types but a significant increase upon whisker touch is restricted to layer L5 thick-tufted pyramids (L5tts) and thus provides a distinct neurophysiological signature. We find that whisker touch can also be decoded from L5tt bursting, but not from other cell-types. We observed high-frequency bursts in L5tts projecting to different subcortical regions, including thalamus, midbrain and brainstem. We conclude that bursts in L5tts allow accurate coding and decoding of exploratory whisker touch.


2008 ◽  
Vol 25 (9) ◽  
pp. 1710-1716 ◽  
Author(s):  
Jiayi Pan ◽  
David A. Jay

Abstract The utility of the acoustic Doppler current profiler (ADCP) for sampling small time and space scales of coastal environments can be enhanced by mounting a high-frequency (1200 kHz) ADCP on an oscillating towed body. This approach requires both an external reference to convert the measured shears to velocities in the earth coordinates and a method to determine the towed body velocities. During the River Influence on the Shelf Ecosystems (RISE) project cruise, a high-frequency (1200 kHz) and narrowbeam ADCP with mode 12 sampling was mounted on a TRIAXUS oscillating towfish, which steers a 3D path behind the ship. This deployment approach extended the vertical range of the ADCP and allowed it to sample near-surface waters outside the ship’s wake. The measurements from a ship-mounted 1200-kHz narrowbeam ADCP are used as references for TRIAXUS ADCP data, and a method of overlapping bins is employed to recover the entire vertical range of the TRIAXUS ADCP. The TRIAXUS vehicle horizontal velocities are obtained by removing the derived ocean current velocity from the TRIAXUS ADCP measurements. The results show that the method is practical.


2021 ◽  
Vol 140 ◽  
pp. 106461
Author(s):  
Nasser A. Marafi ◽  
Alex Grant ◽  
Brett W. Maurer ◽  
Gunjan Rateria ◽  
Marc O. Eberhard ◽  
...  

2019 ◽  
Vol 109 (4) ◽  
pp. 1401-1418 ◽  
Author(s):  
Marco Pilz ◽  
Fabrice Cotton ◽  
Riccardo Zaccarelli ◽  
Dino Bindi

Abstract A proper assessment of seismic reference site conditions has important applications as they represent the basis on which ground motions and amplifications are generally computed. Besides accounting for the average S‐wave velocity over the uppermost 30 m (VS30), the parameterization of high‐frequency ground motions beyond source‐corner frequency received significant attention. κ, an empirical parameter introduced by Anderson and Hough (1984), is often used to represent the spectral decay of the acceleration spectrum at high frequencies. The lack of hard‐rock records and the poor understanding of the physics of κ introduced significant epistemic uncertainty in the final seismic hazard of recent projects. Thus, determining precise and accurate regional hard‐rock κ0 values is critical. We propose an alternative procedure for capturing the reference κ0 on regional scales by linking the well‐known high‐frequency attenuation parameter κ and the properties of multiple‐scattered coda waves. Using geological and geophysical data around more than 1300 stations for separating reference and soft soil sites and based on more than 10,000 crustal earthquake recordings, we observe that κ0 from multiple‐scattered coda waves seems to be independent of the soil type but correlated with the hard‐rock κ0, showing significant regional variations across Europe. The values range between 0.004 s for northern Europe and 0.020 s for the southern and southeastern parts. On the other hand, measuring κ (and correspondingly κ0) on the S‐wave window (as classically proposed), the results are strongly affected by transmitted (reflected, refracted, and scattered) waves included in the analyzed window biasing the proper assessment of κ0. This effect is more pronounced for soft soil sites. In this way, κ0coda can serve as a proxy for the regional hard‐rock κ0 at the reference sites.


2020 ◽  
Vol 110 (2) ◽  
pp. 441-451
Author(s):  
Zafeiria Roumelioti ◽  
Fabrice Hollender ◽  
Philippe Guéguen

ABSTRACT We apply interferometry by deconvolution to compute the shear-wave velocity in shallow sediments (0–83.4 m) based on earthquake records from a vertical accelerometric array (ARGOstoli Network [ARGONET]) on Cephalonia Island, Greece. Analysis of the time variation of measured values reveals a cyclical pattern, which correlates negatively to rainfall and a soil moisture proxy. The pattern includes a sharp reduction in velocity at the beginning of rainy seasons and a gradual rise toward dry periods, the overall variation being around 20%–25% within the shallowest depth interval examined (0–5.6 m) and estimated to reach 40% within the top 2 m. The variation itself and its amplitude are verified by surface-wave dispersion analysis, using ambient vibration data. Synthetic standard spectral ratios suggest that this seasonal effect leaves an imprint on soil response, causing differences in the level of high-frequency ground motion between dry and rainy seasons, and this is verified by earthquake records. Furthermore, the near-surface velocity decrease due to soil saturation can be of the same order of magnitude as the nonlinear coseismic variation, masking the physical process of the nonlinear response of the site due to weak-to-strong-motion shaking. Thus, seasonal variations of seismic-wave velocities in shallow sediments may be important for a number of site-effect related topics, such as high-frequency ground-motion variability, soil anisotropy, kappa measurements, nonlinear site response, and so on.


Sign in / Sign up

Export Citation Format

Share Document