Effects of the cold pressor test on short-term fluctuations of finger arterial blood pressure and heart rate in normal subjects

1993 ◽  
Vol 3 (5) ◽  
pp. 303-310 ◽  
Author(s):  
Frank Weise ◽  
Dominique Laude ◽  
Arlette Girard ◽  
Philippe Zitoun ◽  
Jean-Philippe Siché ◽  
...  
2010 ◽  
Vol 109 (5) ◽  
pp. 1354-1359 ◽  
Author(s):  
Jian Cui ◽  
Manabu Shibasaki ◽  
David A. Low ◽  
David M. Keller ◽  
Scott L. Davis ◽  
...  

The mechanisms by which heat stress impairs the control of blood pressure leading to compromised orthostatic tolerance are not thoroughly understood. A possible mechanism may be an attenuated blood pressure response to a given increase in sympathetic activity. This study tested the hypothesis that whole body heating attenuates the blood pressure response to a non-baroreflex-mediated sympathoexcitatory stimulus. Ten healthy subjects were instrumented for the measurement of integrated muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate, sweat rate, and forearm skin blood flow. Subjects were exposed to a cold pressor test (CPT) by immersing a hand in an ice water slurry for 3 min while otherwise normothermic and while heat stressed (i.e., increase core temperature ∼0.7°C via water-perfused suit). Mean responses from the final minute of the CPT were evaluated. In both thermal conditions CPT induced significant increases in MSNA and MAP without altering heart rate. Although the increase in MSNA to the CPT was similar between thermal conditions (normothermia: Δ14.0 ± 2.6; heat stress: Δ19.1 ± 2.6 bursts/min; P = 0.09), the accompanying increase in MAP was attenuated when subjects were heat stressed (normothermia: Δ25.6 ± 2.3, heat stress: Δ13.4 ± 3.0 mmHg; P < 0.001). The results demonstrate that heat stress can attenuate the pressor response to a sympathoexcitatory stimulus.


2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Jian Cui ◽  
Manabu Shibasaki ◽  
David Low ◽  
David Keller ◽  
Scott Davis ◽  
...  

1994 ◽  
Vol 72 (10) ◽  
pp. 1193-1199 ◽  
Author(s):  
R. D. Kilgour ◽  
J. Carvalho

To test the hypothesis that changes in systemic vascular resistance (SVR) contribute to the differences in arterial blood pressure responses between men and women to local cold pressor tests, nine normotensive men (25.9 ± 5.9 years old) and women (24.4 ± 5.9 years old) performed the cold hand pressor test (CPT; 6 min in 5 °C water) in the supine position. A subgroup of men (n = 5) and women (n = 5) from the CPT were exposed to 6 min of facial cooling (FC) by circulating cold water (5 °C) through a perfusion mask. Using standard auscultatory techniques, pre-experimental systolic and diastolic blood pressures were found to be significantly higher (p ≤ 0.05) in males than females. During the initial 2 min of CPT and FC, both males and females experienced similar relative increases in pressure. Thereafter, only the males maintained an elevated pressor response, whereas the females progressively declined. The gender-related trends in blood pressure can be explained by differences in SVR, with the males exhibiting significantly greater changes in SVR than females during min 4–6 in CPT. Heart rate increased (p ≤ 0.05) in both groups, with the greater rise occurring in females at each minute of CPT. Throughout FC, the changes in SVR were similar between groups, with the exception of the 6-min value being greater than baseline in men but not women. No differences in heart rate or cardiac output were observed between groups during FC. In general, the results indicate that men respond with greater and more prolonged peripheral adjustments (e.g., rise in SVR), whereas females are more like "cardiac" responders, with greater increases in heart rate and an attenuated blood pressure response to CPT.Key words: cold pressor test, facial cooling, gender, systemic vascular resistance, heart rate.


1985 ◽  
Vol 69 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Gianfranco Parati ◽  
Guido Pomidossi ◽  
Agustin Ramirez ◽  
Bruno Cesana ◽  
Giuseppe Mancia

1. In man evaluation of neural cardiovascular regulation makes use of a variety of tests which address the excitatory and reflex inhibitory neural influences that control circulation. Because interpretation of these tests is largely based on the magnitude of the elicited haemodynamic responses, their reproducibility in any given subject is critical. 2. In 39 subjects with continuous blood pressure (intra-arterial catheter) and heart rate monitoring we measured (i) the blood pressure and heart rate rises during hand-grip and cold-pressor test, (ii) the heart rate changes occurring during baroreceptor stimulation and deactivation by injection of phenylephrine and trinitroglycerine, and (iii) the heart rate and blood pressure changes occurring with alteration in carotid baroreceptor activity by a neck chamber. Each test was carefully standardized and performed at 30 min intervals for a total of six times in each subject. 3. The results showed that the responses to any test were clearly different from one another and that this occurred in all subjects studied. For the group as a whole the average response variability (coefficient of variation) ranged from 10.2% for the blood pressure response to carotid baroreceptor stimulation to 44.2% for the heart rate response to cold-pressor test. The variability of the responses was not related to basal blood pressure or heart rate, nor to the temporal sequence of the test performance. 4. Thus tests employed for studying neural cardiovascular control in man produce responses whose reproducibility is limited. This phenomenon may make it more difficult to define the response magnitude typical of each subject, as well as its comparison in different conditions and diseases.


2007 ◽  
Vol 5;10 (9;5) ◽  
pp. 677-685
Author(s):  
David M. Schultz

Background: Several animal studies support the contention that thoracic spinal cord stimulation (SCS) might decrease arterial blood pressure. Objective: To determine if electrical stimulation of the dorsal spinal cord in humans will lower mean arterial pressure (MAP) and heart rate (HR). Design: Case Series Methods: Ten normotensive subjects that were clinically indicated for SCS testing were studied. Two of the 10 patients who underwent testing were excluded from the analysis because they did not respond to the Cold Pressor Test (CPT). Systolic blood pressure, diastolic blood pressure, and heart rate were measured continuously at the wrist (using the Vasotrac device). SCS was administered with quadripolar leads implanted into the epidural space under fluoroscopic guidance. SCS was randomly performed either in the T1-T2 or T5-T6 region of the spinal cord during normal conditions as well as during transient stress induced by CPT. The CPT was conducted by immersing the non-dominant hand in ice-cold water for 2 minutes. Results: There were moderate decreases in MAP and HR during SCS at the T5-T6 region compared to baseline that did not reach statistical significance. However, SCS at the T1-T2 region tended to increase MAP and HR compared to baseline but the change did not reach statistical significance. Arterial blood pressure was transiently elevated by 9.4 ± 3.8 mmHg using CPT during the control period with SCS turned off and also during SCS at either the T1-T2 region or T5-T6 region of the spinal cord (by 9.2 ± 5 mmHg and 10.7 ± 8.4 mmHg, respectively). During SCS at T5-T6, the CPT significantly increased MAP by 5.9±7.1 mmHg compared to control CPT (SCS off). Conclusion: This study demonstrated that SCS at either the T1-T2 or T5-T6 region did not significantly alter MAP or HR compared to baseline (no SCS). However, during transcient stress (elevated sympathetic tone) induced by CPT, there was a significant increase in MAP and moderate decrease in HR during SCS at T5-T6 region, which is not consistent with previous data in the literature. Acute SCS did not result in adverse cardiovascular responses and proved to be safe. Key words: Spinal cord stimulation, mean arterial pressure, heart rate, cold pressor test


10.4085/16-20 ◽  
2020 ◽  
Author(s):  
Lentini Matylda ◽  
Scalia Joseph ◽  
Berger Lebel Frédérike ◽  
Touma Fadi ◽  
Jhajj Aneet ◽  
...  

Abstract Context: Athletes are often exposed to pain due to injury and competition. There is preliminary evidence that cardiovascular measures could be an objective measure of pain, but the cardiovascular response can be influenced by psychological factors such as catastrophizing. Objectives: The purpose of our study was to use a painful cold pressor test to measure the relationship between catastrophizing, pain, and cardiovascular variables in athletes. Design: Pre-post test. Setting: We completed all measures in a laboratory setting. Participants: Thirty-six male rugby athletes participated in the study. Main outcome measures: We measured catastrophizing with the Pain Catastrophizing Scale and pain with a Numeric Pain Rating Scale. Cardiovascular measures included heart rate, systolic, and diastolic blood pressure, and heart rate variability. Results: During the cold pressor test, participants experienced a significant increase in pain (0 to 4.1±2.2), systolic blood pressure (126.7±16.5mm Hg to 149.7±23.4mm Hg), diastolic blood pressure (76.9±8.3mm Hg to 91.9±11.5mm Hg) and heart rate variability (from 0.0164ms±0.0121 to 0.0400ms±0.0323) (all p&lt;.001). In addition, there was a significant decrease in heart rate after the cold pressor test (p=0.04). There was a significant correlation between athlete's pain catastrophizing to both pain intensity and change in heart rate during the cold pressor test (p=.017 and p=.003 respectively). A significant linear regression indicated pain and catastrophizing explained 29% of the variance of the change in heart rate (p=.003). Conclusion: Athletes who have catastrophizing thoughts are more likely to experience higher levels of pain and a greater cardiovascular response during a painful stimulus. The change in cardiovascular variables may be a good alternative for an objective measure of pain in athletes in the future.


Sign in / Sign up

Export Citation Format

Share Document