More generalized hybrid variational principle and corresponding finite element model

1986 ◽  
Vol 7 (5) ◽  
pp. 481-487
Author(s):  
Chen Wan-ji
1981 ◽  
Vol 27 (95) ◽  
pp. 19-24 ◽  
Author(s):  
Robert G. Oakberg

AbstractThe object of the research is to determine whether direct methods from the calculus of variations can provide convenient approximate solutions of complex problems in glacier mechanics. The Ritz technique is used to minimize an appropriate functional. Coordinate functions obtained from a finite-element model are combined with a coordinate function that is the solution of a related problem. The finite-element coordinate functions make localized adjustments to the related solution. Solutions of two sample problems are presented. An analysis of the closure of an intergranular vein in ice at the melting point is based upon a variational principle for velocities. An analysis of the flow of ice in a cylindrical channel is based upon a variational principle for stresses.


1981 ◽  
Vol 27 (95) ◽  
pp. 19-24
Author(s):  
Robert G. Oakberg

AbstractThe object of the research is to determine whether direct methods from the calculus of variations can provide convenient approximate solutions of complex problems in glacier mechanics. The Ritz technique is used to minimize an appropriate functional. Coordinate functions obtained from a finite-element model are combined with a coordinate function that is the solution of a related problem. The finite-element coordinate functions make localized adjustments to the related solution. Solutions of two sample problems are presented. An analysis of the closure of an intergranular vein in ice at the melting point is based upon a variational principle for velocities. An analysis of the flow of ice in a cylindrical channel is based upon a variational principle for stresses.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050007
Author(s):  
Do Thanh Binh ◽  
V. A. Chebanenko ◽  
Le Van Duong ◽  
E. Kirillova ◽  
Pham Manh Thang ◽  
...  

Based on the variational principle, equations and boundary conditions for transverse steady vibrations of a bimorph consisting of a piezoelectric and piezomagnetic layers are obtained. The results of calculations of natural frequencies are compared with the finite element model of the device in ACELAN.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document