Excitation of sham rage behaviour by controlled electrical stimulation of group I muscle afferents

1966 ◽  
Vol 22 (5) ◽  
pp. 315-316 ◽  
Author(s):  
A. Malliani ◽  
G. Carli ◽  
G. Mancia ◽  
A. Zanchetti

1968 ◽  
Vol 31 (2) ◽  
pp. 210-220 ◽  
Author(s):  
A Malliani ◽  
G Carli ◽  
G Mancia ◽  
A Zanchetti


1993 ◽  
Vol 70 (5) ◽  
pp. 1805-1810 ◽  
Author(s):  
J. Lafleur ◽  
D. Zytnicki ◽  
G. Horcholle-Bossavit ◽  
L. Jami

1. The aim of the present experiments was to verify whether group II inputs from gastrocnemius medialis (GM) muscle could elicit declining inhibitions similar to those observed during GM contractions in a variety of lumbar motoneurons of the cat spinal cord. Motoneurons were recorded intracellularly in chloralose- or pentobarbitone-anesthetized preparations during electrical stimulation of GM nerve with repetitive trains. 2. With strengths in the group I range, repetitive stimulation evoked the usual Ia excitation in homonymous motoneurons and excitatory postsynaptic potential (EPSP) amplitudes remained constant throughout the stimulation sequence. In synergic plantaris motoneurons lacking an excitatory connection with Ia afferents from GM, the same stimulation, kept at a constant strength throughout the stimulation sequence, elicited rapidly decreasing inhibitory potentials reminiscent of those evoked by GM contractions. 3. In motoneurons of pretibial flexors, quadriceps, and posterior biceps-semitendinosus, the stimulation strength required to observe declining inhibitions resembling those produced by GM contractions was 4-8 times group I threshold, engaging group II in addition to group I fibers. 4. These results show that input from GM group II plus group I afferents can elicit inhibitory effects in a variety of motoneurons. Such observations support the hypothesis that messages from spindle secondary endings and/or nonspecific muscle receptors activated during contraction might contribute to the widespread inhibition caused by GM contractions. 5. Inasmuch as constant input in group II and group I afferents evoked declining inhibitory potentials, the origin of the decline must be central, which suggests that the rapid reduction of contraction-induced inhibitions also depended on a central mechanism.



1998 ◽  
Vol 274 (5) ◽  
pp. H1552-H1559 ◽  
Author(s):  
Janeen M. Hill ◽  
Marc P. Kaufman

We determined the effects of stimulation of the mesencephalic locomotor region (MLR) and the muscle reflex, each evoked separately, on the discharge of cutaneous sympathetic fibers innervating the hairy skin of decerebrate cats. Electrical stimulation of the MLR was performed while the cats were paralyzed with vecuronium bromide. The muscle reflex was evoked while the cats were not paralyzed by electrical stimulation of the tibial nerve at current intensities that did not activate directly group III and IV muscle afferents. MLR stimulation increased, on average, the discharge of the 23 cutaneous sympathetic fibers tested ( P < 0.05). The muscle reflex, in contrast, had no overall effect on the discharge of 21 sympathetic fibers tested ( P > 0.05). Both maneuvers markedly increased mean arterial pressure and heart rate ( P < 0.05). Prevention of the baroreceptor reflex with the α-adrenergic blocking agent phentolamine did not reveal a stimulatory effect of the muscle reflex on cutaneous sympathetic discharge. We conclude that the MLR is a more important mechanism than is the muscle reflex in controlling sympathetic discharge to hairy skin during dynamic exercise.



1996 ◽  
Vol 75 (3) ◽  
pp. 1126-1137 ◽  
Author(s):  
G. W. Hiebert ◽  
P. J. Whelan ◽  
A. Prochazka ◽  
K. G. Pearson

1. In this investigation, we tested the hypothesis that muscle spindle afferents signaling the length of hind-leg flexor muscles are involved in terminating extensor activity and initiating flexion during walking. The hip flexor muscle iliopsoas (IP) and the ankle flexors tibialis anterior (TA) and extensor digitorum longus (EDL) were stretched or vibrated at various phases of the step cycle in spontaneously walking decerebrate cats. Changes in electromyogram amplitude, duration, and timing were then examined. The effects of electrically stimulating group I and II afferents in the nerves to TA and EDL also were examined. 2. Stretch of the individual flexor muscles (IP, TA, or EDL) during the stance phase reduced the duration of extensor activity and promoted the onset of flexor burst activity. The contralateral step cycle also was affected by the stretch, the duration of flexor activity being shortened and extensor activity occurring earlier. Therefore, stretch of the flexor muscles during the stance phase reset the locomotor rhythm to flexion ipsilaterally and extension contralaterally. 3. Results of electrically stimulating the afferents from the TA and EDL muscles suggested that different groups of afferents were responsible for the resetting of the step cycle. Stimulation of the TA nerve reset the locomotor step cycle when the stimulus intensity was in the group II range (2-5 xT). By contrast, stimulation of the EDL nerve generated strong resetting of the step cycle in the range of 1.2-1.4 xT, where primarily the group Ia afferents from the muscle spindles would be activated. 4. Vibration of IP or EDL during stance reduced the duration of the extensor activity by similar amounts to that produced by muscle stretch or by electrical stimulation of EDL at group Ia strengths. This suggests that the group Ia afferents from IP and EDL are capable of resetting the locomotor pattern generator. Vibration of TA did not affect the locomotor rhythm. 5. Stretch of IP or electrical stimulation of TA afferents (5 xT) during the flexion phase did not change the duration of the flexor activity. Stimulation of the EDL nerve at 1.8-5 xT during flexion increased the duration of the flexor activity. In none of our preparations did we observe resetting to extension when the flexor afferents were activated during flexion. 6. We conclude that as the flexor muscles lengthen during the stance phase of gait, their spindle afferents (group Ia afferents for EDL and IP, group II afferents for TA) act to inhibit the spinal center generating extensor activity thus facilitating the initiation of swing.



1980 ◽  
Vol 43 (6) ◽  
pp. 1631-1644 ◽  
Author(s):  
R. P. Dum ◽  
T. T. Kennedy

1. Synaptic potentials were recorded intracellularly in tibialis anterior (TA) motoneurons following stimulation of a descending brain stem pathway, the medial longitudinal fasciculus (MLF), and three segmental inputs, the homonymous and heteronymous group Ia afferents, the group I afferents from the antagonist, and the cutaneous and muscle afferents. Intracellular stimulation of the motoneurons was used to classify them, based on the properties of the innervated muscle units, into types FF, F(int), FR, and S (6, 16). 2. The sum of the monosynaptic EPSP amplitudes resulting from stimulation of homonymous and heteronymous group Ia afferents (summed group Ia EPSP) was inversely related to motoneuron size, as assessed by motoneuron input resistance, and was inversely related to motor-unit tetanic tension. Type-FF, -FR, and -S motoneurons showed significant differences in the mean amplitude of their summed group Ia EPSPs. 3. The amplitudes of disynaptic IPSPs resulting from stimulation of group I afferents in the antagonist muscle also showed an inverse relationship to motoneuron size. The observed relationships between motoneuron size and the monosynaptic group Ia EPSP amplitude or the disynaptic group I IPSP amplitude are compatible with the “size principle” of motor-unit recruitment (26). 4. The amplitudes of the monosynaptic EPSPs evoked in TA motoneurons by stimulation of the MLF were distributed rather randomly among all types of TA motoneurons. A slight tendency of larger monosynaptic EPSPs to occur in motoneurons with larger tetanic tensions was observed. 5. The polysynaptic effects from cutaneous and muscle afferents in sural and gastrocnemius-soleus nerves were frequently excitatory on type-FF motoneurons, but were primarily inhibitory on type-FR and -S motoneurons. Clearly, the polysynaptic cutaneous and muscle inputs and the monosynaptic MLF input onto TA motoneurons show a different pattern of synaptic organization than the group I inputs. 6. In general, the synaptic organization of the TA motor nucleus is similar to that of its extensor antagonist, medial gastrocnemius (MG) (2--5, 7, 8), when analogous neural circuits are compared. This parallel organization suggests a commonality of motor-control systems for both flexor and extensor muscles.



1995 ◽  
Vol 73 (3) ◽  
pp. 974-982 ◽  
Author(s):  
N. Kouchtir ◽  
J. F. Perrier ◽  
D. Zytnicki ◽  
L. Jami

1. Motoneurons innervating peroneal muscles were recorded intracellularly in anesthetized cats during sustained submaximal isometric contractions of peroneus brevis produced by repetitive electrical stimulation of motor axons in the distal portion of cut ventral root filaments. 2. In contrast with the inhibition previously observed during contractions of gastrocnemius medialis muscle in triceps surae motoneurons, the afferent input generated by peroneus brevis contraction elicited excitatory potentials in nearly all motoneurons supplying peroneus brevis, peroneus tertius, or peroneus longus muscles. 3. We ascribed the contraction-induced excitation of peroneal motoneurons to spindle afferents for two reasons. First, the amplitude of contraction-induced excitatory potentials increased when the ventral root stimulation strength was increased to recruit gamma-axons. Second, with stimulation strengths under gamma-threshold, peroneus brevis contraction still excited peroneal motoneurons, and we obtained evidence that activation of spindles by skeletofusimotor beta-axons could account at least partly for this excitation. 4. The lack of contraction-induced inhibition in peroneal motoneurons and the prevalence of contraction-induced excitation raised the possibility that, in contrast to the usual effects of tendon organ afferents, Ib afferents from peroneus brevis might exert an excitatory influence on homonymous motoneurons. The fact that electrical stimulation of group I afferents in the nerve to peroneus brevis only exceptionally evoked inhibition in peroneal motoneurons would appear compatible with this hypothesis. Furthermore, stimulation of cutaneous afferents, known to facilitate transmission in Ib pathways, only exceptionally revealed a weak contraction-induced inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)



1983 ◽  
Vol 49 (3) ◽  
pp. 649-661 ◽  
Author(s):  
K. D. Kniffki ◽  
K. Mizumura

1. The responses evoked by electrical stimulation of cutaneous and muscle nerves, by noxious and innocuous mechanical stimulation of muscle, tendon, and cutaneous tissues, and by intra-arterial (ia) injection of algesic substances (potassium, bradykinin) into arteries supplying the gastrocnemius-soleus muscle (GS) were studied in single neurons located in the ventroposterolateral nucleus (VPL) and in the transitional zone between VPL and the ventrolateral nucleus (VL) of cats lightly anesthetized with thiopenthal. Such chemical stimulation of the muscles has been shown to activate muscular groups III and IV axons specifically (43, 44) and presumably is nociceptive in character (14, 17, 31). 2. One hundred eight neurons were tested. Eighty-three of the units responded only to various types of cutaneous stimulation of the hindlimb. The other 25 responded to algesic stimulation of muscle and/or tendon. Of these latter 25, 7 had no apparent cutaneous receptive field although 4 of them responded to electrical stimulation of the common peroneal and/or sural nerve. Thus, only three neurons responded exclusively to algesic chemical and noxious mechanical stimulation of the muscle. Of the other 18 neurons, 14 had cutaneous receptive fields restricted to the hindlimb and often responded to non-noxious repetitive light stroking and to noxious pinching with a high-frequency discharge. Four cells (two of which had cutaneous input only from low-threshold mechanoreceptors) had complex and large receptive fields extending to more than one limb. 3. Potassium was a more potent muscle receptor stimulant than bradykinin, the latter only weakly exciting 3 neurons of 24 tested with both substances. The responses to potassium were rapid (approximately 4.0 s in latency) and tended to be greater (have higher response rates) for the units that responded to cutaneous as well as muscle/tendon stimulation. 4. Most neurons that responded to noxious deep stimulation had a threshold for the GS nerve volley in the group III fiber range. The few neurons with thresholds slightly below the group III range did not respond to activation of group I or II muscle spindle afferents by intra-arterial application of succinylcholine or by stretching the muscle. 5. Neurons with responses to any of the muscle, tendon, or cutaneous nociceptive stimuli were located at the ventral and dorsal periphery of VPL and in the VPL-VL transitional zone. 6. These results strongly suggest that there exist regions within the lateral diencephalon of cats that are capable of processing nociceptive information and that these regions are located at the periphery of VPL.



1961 ◽  
Vol 200 (4) ◽  
pp. 679-684 ◽  
Author(s):  
K. Koizumi ◽  
J. Ushiyama ◽  
C. McC. Brooks

Respiratory effects of stimulating afferent fibers of muscle, skin and mixed nerve were determined in Nembutal-anesthetized cats. Repetitive stimuli which produced only monosynaptic reflex actions caused augmentation of respiration. When stronger stimuli also activated fibers of a smaller diameter than group I afferents, polysynaptic reflexes were evoked and greater changes in respiration resulted. Volume rather than rate changes were induced by stimulation of these muscle afferents. Microelectrodes were used to record from respiratory neurons of the medulla and pons. Most neurons fired in conjunction with inspiration; stimulation of muscle afferents advanced time of firing and increased frequency of discharge. Neurons firing in conjunction with expiration were inhibited by muscle afferents. A few neurons of the pons showed respiration-linked activity modified by afferent nerve stimulation. Segmental reflex discharges, out intercostal nerves, elicited by dorsal root stimulation were found to be inhibited by stimulation of muscle afferents. Discharges from muscle receptors affect ventilatory volumes and activities of medullary neurons which seemingly participate in the control of respiration.



1985 ◽  
Vol 53 (2) ◽  
pp. 518-529 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

In the experiments described in the preceding paper electrical stimulation of the quadriceps (QUAD), medial tibial (MTIB), and flexor digitorum and hallucis longus (FDHL) muscle nerves was used to evoke oligosynaptic group I postsynaptic potentials (PSPs) in medial gastrocnemius (MG) motoneurons. In the present study, we attempted to specify the types of afferent fibers which mediate that oligosynaptic activity (FDHL to MG only). In one series of experiments, isolated single flexor digitorum longus (FDL) and flexor hallucis longus (FHL) afferents were identified as Ia, Ib, or group II fibers according to their conduction velocities, responses to muscle contraction, and mechanical thresholds to small amplitude triangular stretches applied to the parent muscles. We also determined the electrical thresholds of the identified afferent fibers by applying graded electrical stimulation to their muscle nerve. These results were used as criteria to define the types of afferents that mediated the electrically and stretch-evoked FDHL oligosynaptic PSPs recorded in MG motoneurons during a second series of experiments. The amplitudes of the oligosynaptic PSPs evoked in MG motoneurons increased as the strength of the electrical stimuli applied to the FDHL muscle nerves was raised to activate greater numbers of Ia- and Ib-fibers, but showed little or no additional increase when the stimulus intensity was raised further to include the majority of group II fibers. On this basis, a significant contribution by group II fibers to these oligosynaptic PSPs was considered unlikely. Simultaneous electrical activation of both Ia- and Ib-fibers produced distinct oligosynaptic PSPs in MG motoneurons, but these were likely due primarily to Ib-afferent activity, since selective activation of Ia-afferents (by stretch) rarely produced oligosynaptic PSPs in the same motoneurons. There was, however, evidence for some Ia contribution to these oligosynaptic PSPs. This is consistent with the demonstration that Ia- and Ib-afferent fibers converge onto common interneurons and that selective activation of Ia-fibers can produce PSPs similar to those evoked by concurrent stimulation of Ia- and Ib-fibers. On the basis of the present results and those of several related studies it is argued that the oligosynaptic PSPs evoked in MG motoneurons by submaximal group I stimulation of the FDHL, MTIB, or QUAD muscle nerves can be ascribed predominantly to the activation of Ib-afferent fibers, with only minimal Ia and probably no group II contribution.



2000 ◽  
Vol 278 (3) ◽  
pp. H871-H877 ◽  
Author(s):  
J. M. Legramante ◽  
G. Raimondi ◽  
C. M. Adreani ◽  
S. Sacco ◽  
F. Iellamo ◽  
...  

Repetitive-twitch contraction of the hindlimb muscles in anesthetized rabbits consistently evokes a reflex depressor response, whereas this type of contraction in anesthetized cats evokes a reflex pressor response in about one-half of the preparations tested. Rapidly conducting group III fibers appear to comprise the afferent arm of the reflex arc, evoking the depressor response to twitch contraction in rabbits because electrical stimulation of their axons reflexly decreases arterial pressure. In contrast, electrical stimulation of the axons of slowly conducting group III and group IV afferents reflexly increases arterial pressure in rabbits. In the present study, we examined the discharge properties of group III and IV muscle afferents and found that the former (i.e., 13 of 20), but not the latter (i.e., 0 of 10), were stimulated by 5 min of repetitive-twitch contraction (1 Hz) of the rabbit triceps surae muscles. Moreover, most of the group III afferents responding to contraction appeared to be mechanically sensitive, discharging in synchrony with the muscle twitch. On average, rapidly conducting group III afferents responded for the 5-min duration of 1-Hz repetitive-twitch contraction, whereas slowly conducting group III afferents responded only for the first 2 min of contraction. We conclude that rapidly conducting group III afferents, which are mechanically sensitive, are primarily responsible for evoking the reflex depressor response to repetitive-twitch contractions in anesthetized rabbits.



Sign in / Sign up

Export Citation Format

Share Document