Identification of type I collagen fibrils in human dentine. Electron microscope immunotyping

1983 ◽  
Vol 39 (2) ◽  
pp. 169-171 ◽  
Author(s):  
H. Magloire ◽  
A. Joffre ◽  
J. A. Grimaud ◽  
D. Herbage ◽  
M. L. Couble ◽  
...  
Micron ◽  
2009 ◽  
Vol 40 (5-6) ◽  
pp. 665-668 ◽  
Author(s):  
Mitsuhiro Okuda ◽  
Masaki Takeguchi ◽  
Motohiro Tagaya ◽  
Toru Tonegawa ◽  
Ayako Hashimoto ◽  
...  

2009 ◽  
Vol 102 (4) ◽  
Author(s):  
S. G. Gevorkian ◽  
A. E. Allahverdyan ◽  
D. S. Gevorgyan ◽  
A. L. Simonian

2016 ◽  
Vol 92 ◽  
pp. 1175-1182 ◽  
Author(s):  
Meilian Zou ◽  
Huan Yang ◽  
Haibo Wang ◽  
Haiyin Wang ◽  
Juntao Zhang ◽  
...  

2008 ◽  
Vol 94 (6) ◽  
pp. 2204-2211 ◽  
Author(s):  
Lanti Yang ◽  
Kees O. van der Werf ◽  
Carel F.C. Fitié ◽  
Martin L. Bennink ◽  
Pieter J. Dijkstra ◽  
...  

Nanoscale ◽  
2014 ◽  
Vol 6 (14) ◽  
pp. 8134-8139 ◽  
Author(s):  
Hai-Nan Su ◽  
Li-Yuan Ran ◽  
Zhi-Hua Chen ◽  
Qi-Long Qin ◽  
Mei Shi ◽  
...  

The large distribution ofD-spacing values of type I collagen fibrils was due to image drift during measurement, and theD-spacing values were nearly identical both within a single fibril bundle and in different fibril bundles, exhibiting only a narrow distribution of 2.5 nm.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 358 ◽  
Author(s):  
Haiyan Ju ◽  
Xiuying Liu ◽  
Gang Zhang ◽  
Dezheng Liu ◽  
Yongsheng Yang

Native collagen fibrils (CF) were successfully extracted from bovine tendons using two different methods: modified acid-solubilized extraction for A-CF and pepsin-aided method for P-CF. The yields of A-CF and P-CF were up to 64.91% (±1.07% SD) and 56.78% (±1.22% SD) (dry weight basis), respectively. The analyses of both amino acid composition and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that A-CF and P-CF were type I collagen fibrils. Both A-CF and P-CF retained the intact crystallinity and integrity of type I collagen’s natural structure by FTIR spectra, circular dichroism spectroscopy (CD) and X-ray diffraction detection. The aggregation structures of A-CF and P-CF were displayed by UV–Vis. However, A-CF showed more intact aggregation structure than P-CF. Microstructure and D-periodicities of A-CF and P-CF were observed (SEM and TEM). The diameters of A-CF and P-CF are about 386 and 282 nm, respectively. Although both A-CF and P-CF were theoretically concordant with the Schmitt hypothesis, A-CF was of evener thickness and higher integrity in terms of aggregation structure than P-CF. Modified acid-solubilized method provides a potential non-enzyme alternative to extract native collagen fibrils with uniform thickness and integral aggregation structure.


1998 ◽  
Vol 273 (8) ◽  
pp. 4338-4344 ◽  
Author(s):  
Takashi Nakamura ◽  
G. A. Jamieson ◽  
Minoru Okuma ◽  
Jun-ichi Kambayashi ◽  
Narendra N. Tandon

Sign in / Sign up

Export Citation Format

Share Document