The labilizing effect of minute glass particles on black lipid membranes and the stabilizing action of a lipophilic glucofuranose derivative

1971 ◽  
Vol 2 (1) ◽  
pp. 33-38 ◽  
Author(s):  
H. Majer
Author(s):  
Neng-Bo He ◽  
S.W. Hui

Monolayers and planar "black" lipid membranes have been widely used as models for studying the structure and properties of biological membranes. Because of the lack of a suitable method to prepare these membranes for electron microscopic observation, their ultrastructure is so far not well understood. A method of forming molecular bilayers over the holes of fine mesh grids was developed by Hui et al. to study hydrated and unsupported lipid bilayers by electron diffraction, and to image phase separated domains by diffraction contrast. We now adapted the method of Pattus et al. of spreading biological membranes vesicles on the air-water interfaces to reconstitute biological membranes into unsupported planar films for electron microscopic study. hemoglobin-free human erythrocyte membrane stroma was prepared by hemolysis. The membranes were spreaded at 20°C on balanced salt solution in a Langmuir trough until a surface pressure of 20 dyne/cm was reached. The surface film was repeatedly washed by passing to adjacent troughs over shallow partitions (fig. 1).


1985 ◽  
Vol 813 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Alfred Miller ◽  
Günther Schmidt ◽  
Hansjörg Eibl ◽  
Wolfgang Knoll

Antibiotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Amani Alghalayini ◽  
Alvaro Garcia ◽  
Thomas Berry ◽  
Charles Cranfield

This review identifies the ways in which tethered bilayer lipid membranes (tBLMs) can be used for the identification of the actions of antimicrobials against lipid bilayers. Much of the new research in this area has originated, or included researchers from, the southern hemisphere, Australia and New Zealand in particular. More and more, tBLMs are replacing liposome release assays, black lipid membranes and patch-clamp electrophysiological techniques because they use fewer reagents, are able to obtain results far more quickly and can provide a uniformity of responses with fewer artefacts. In this work, we describe how tBLM technology can and has been used to identify the actions of numerous antimicrobial agents.


1988 ◽  
Vol 104 (2) ◽  
pp. 179-191 ◽  
Author(s):  
B. Christensen ◽  
M. Gutweiler ◽  
E. Grell ◽  
N. Wagner ◽  
R. Pabst ◽  
...  

1982 ◽  
Vol 21 (S5) ◽  
pp. 869-880 ◽  
Author(s):  
Roland Benz ◽  
Werner Pra� ◽  
Helmut Ringsdorf

Author(s):  
S. Mittler-Neher ◽  
J. Spinke ◽  
W. Knoll

2021 ◽  
Vol 118 (48) ◽  
pp. e2113202118
Author(s):  
Rafael L. Schoch ◽  
Frank L. H. Brown ◽  
Gilad Haran

Lipid membranes are complex quasi–two-dimensional fluids, whose importance in biology and unique physical/materials properties have made them a major target for biophysical research. Recent single-molecule tracking experiments in membranes have caused some controversy, calling the venerable Saffman–Delbrück model into question and suggesting that, perhaps, current understanding of membrane hydrodynamics is imperfect. However, single-molecule tracking is not well suited to resolving the details of hydrodynamic flows; observations involving correlations between multiple molecules are superior for this purpose. Here dual-color molecular tracking with submillisecond time resolution and submicron spatial resolution is employed to reveal correlations in the Brownian motion of pairs of fluorescently labeled lipids in membranes. These correlations extend hundreds of nanometers in freely floating bilayers (black lipid membranes) but are severely suppressed in supported lipid bilayers. The measurements are consistent with hydrodynamic predictions based on an extended Saffman–Delbrück theory that explicitly accounts for the two-leaflet bilayer structure of lipid membranes.


2009 ◽  
Vol 95 (20) ◽  
pp. 203703 ◽  
Author(s):  
A. Beerlink ◽  
M. Mell ◽  
M. Tolkiehn ◽  
T. Salditt

1985 ◽  
Vol 4 (12) ◽  
pp. 3079-3085 ◽  
Author(s):  
K. Fendler ◽  
E. Grell ◽  
M. Haubs ◽  
E. Bamberg

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3131
Author(s):  
Olga D. Novikova ◽  
Valentina A. Khomenko ◽  
Natalia Yu. Kim ◽  
Galina N. Likhatskaya ◽  
Lyudmila A. Romanenko ◽  
...  

Marinomonas primoryensis KMM 3633T, extreme living marine bacterium was isolated from a sample of coastal sea ice in the Amursky Bay near Vladivostok, Russia. The goal of our investigation is to study outer membrane channels determining cell permeability. Porin from M. primoryensis KMM 3633T (MpOmp) has been isolated and characterized. Amino acid analysis and whole genome sequencing were the sources of amino acid data of porin, identified as Porin_4 according to the conservative domain searching. The amino acid composition of MpOmp distinguished by high content of acidic amino acids and low content of sulfur-containing amino acids, but there are no tryptophan residues in its molecule. The native MpOmp existed as a trimer. The reconstitution of MpOmp into black lipid membranes demonstrated its ability to form ion channels whose conductivity depends on the electrolyte concentration. The spatial structure of MpOmp had features typical for the classical gram-negative porins. However, the oligomeric structure of isolated MpOmp was distinguished by very low stability: heat-modified monomer was already observed at 30 °C. The data obtained suggest the stabilizing role of lipids in the natural membrane of marine bacteria in the formation of the oligomeric structure of porin.


Sign in / Sign up

Export Citation Format

Share Document