peptide interactions
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 59)

H-INDEX

46
(FIVE YEARS 5)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2075
Author(s):  
Tamara Lützenburg ◽  
Nele Burdina ◽  
Matthias S. Scholz ◽  
Ines Neundorf

Cell-penetrating peptides (CPPs) have emerged as versatile tools to increase the intracellular accumulation of different kinds of cargoes. For an efficient cellular uptake and drug delivery, their organization into a distinct and stable secondary structure at the outer surface of the plasma membrane is a hallmark and supports optimal lipid–peptide interactions. Incorporation of hydrophobic moieties, such as carboranes (CBs), has the potential to increase the lipophilicity of peptides, and thus, to facilitate the formation of secondary structures. Herein, we present synthesis and biophysical as well as biological characterization of carborane-CPP conjugates having incorporated one or more CB clusters. Our results highlight the possibility to modulate the secondary structure of CPPs by the addition of CB’s leading to constructs with altered membrane activity and promising use in terms of nucleic acid delivery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hakimeh Ebrahimi-Nik ◽  
Marmar Moussa ◽  
Ryan P. Englander ◽  
Summit Singhaviranon ◽  
Justine Michaux ◽  
...  

AbstractHigh-affinity MHC I-peptide interactions are considered essential for immunogenicity. However, some neo-epitopes with low affinity for MHC I have been reported to elicit CD8 T cell dependent tumor rejection in immunization-challenge studies. Here we show in a mouse model that a neo-epitope that poorly binds to MHC I is able to enhance the immunogenicity of a tumor in the absence of immunization. Fibrosarcoma cells with a naturally occurring mutation are edited to their wild type counterpart; the mutation is then re-introduced in order to obtain a cell line that is genetically identical to the wild type except for the neo-epitope-encoding mutation. Upon transplantation into syngeneic mice, all three cell lines form tumors that are infiltrated with activated T cells. However, lymphocytes from the two tumors that harbor the mutation show significantly stronger transcriptional signatures of cytotoxicity and TCR engagement, and induce greater breadth of TCR reactivity than those of the wild type tumors. Structural modeling of the neo-epitope peptide/MHC I pairs suggests increased hydrophobicity of the neo-epitope surface, consistent with higher TCR reactivity. These results confirm the in vivo immunogenicity of low affinity or ‘non-binding’ epitopes that do not follow the canonical concept of MHC I-peptide recognition.


2021 ◽  
Vol 22 (21) ◽  
pp. 11871
Author(s):  
A. Manuel Liaci ◽  
Friedrich Förster

Cleavable endoplasmic reticulum (ER) signal peptides (SPs) and other non-cleavable signal sequences target roughly a quarter of the human proteome to the ER. These short peptides, mostly located at the N-termini of proteins, are highly diverse. For most proteins targeted to the ER, it is the interactions between the signal sequences and the various ER targeting and translocation machineries such as the signal recognition particle (SRP), the protein-conducting channel Sec61, and the signal peptidase complex (SPC) that determine the proteins’ target location and provide translocation fidelity. In this review, we follow the signal peptide into the ER and discuss the recent insights that structural biology has provided on the governing principles of those interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faisal Abedin ◽  
Nabin Kandel ◽  
Suren A. Tatulian

AbstractAmyloid β (Aβ) peptide aggregation plays a central role in Alzheimer’s disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1–42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1–10 (P1), Aβ6–15 (P2), Aβ11–20 (P3), Aβ16–25 (P4), Aβ21–30 (P5), Aβ26–36 (P6), and Aβ31–42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1–42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1–42 molecules and thereby inhibit Aβ1–42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Elliot Springfield ◽  
Alana Willis ◽  
John Merle ◽  
Johanna Mazlo ◽  
Maria Ngu-Schwemlein

Tetrapeptides containing a Cys-Gly-Cys motif and a propensity to adopt a reverse-turn structure were synthesized to evaluate how O-, N-, H-, and aromatic π donor groups might contribute to mercury(II) complex formation. Tetrapeptides Xaa-Cys-Gly-Cys, where Xaa is glycine, glutamate, histidine, or tryptophan, were prepared and reacted with mercury(II) chloride. Their complexation with mercury(II) was studied by spectroscopic methods and computational modeling. UV-vis studies confirmed that mercury(II) binds to the cysteinyl thiolates as indicated by characteristic ligand-to-metal-charge-transfer transitions for bisthiolated S-Hg-S complexes, which correspond to 1 : 1 mercury-peptide complex formation. ESI-MS data also showed dominant 1 : 1 mercury-peptide adducts that are consistent with double deprotonations from the cysteinyl thiols to form thiolates. These complexes exhibited a strong positive circular dichroism band at 210 nm and a negative band at 193 nm, indicating that these peptides adopted a β-turn structure after binding mercury(II). Theoretical studies confirmed that optimized 1 : 1 mercury-peptide complexes adopt β-turns stabilized by intramolecular hydrogen bonds. These optimized structures also illustrate how specific N-terminal side-chain donor groups can assume intramolecular interactions and contribute to complex stability. Fluorescence quenching results provided supporting data that the indole donor group could interact with the coordinated mercury. The results from this study indicate that N-terminal side-chain residues containing carboxylate, imidazole, or indole groups can participate in stabilizing dithiolated mercury(II) complexes. These structural insights on peripheral mercury-peptide interactions provide additional understanding of the chemistry of mercury(II) with side-chain donor groups in peptides.


2021 ◽  
Author(s):  
Stepan Nersisyan ◽  
Anton Zhiyanov ◽  
Maxim Shkurnikov ◽  
Alexander Tonevitsky

Rapidly appearing SARS-CoV-2 mutations can affect T cell epitopes, which can help the virus to evade either CD8 or CD4 T-cell responses. We developed T-cell COVID-19 Atlas (T-CoV, https://t-cov.hse.ru) - the comprehensive web portal, which allows one to analyze how SARS-CoV-2 mutations alter the presentation of viral peptides by HLA molecules. The data are presented for common virus variants and the most frequent HLA class I and class II alleles. Binding affinities of HLA molecules and viral peptides were assessed with accurate in silico methods. The obtained results highlight the importance of taking HLA alleles diversity into account: mutation-mediated alterations in HLA-peptide interactions were highly dependent on HLA alleles. For example, we found that the essential number of peptides tightly bound to HLA-B*07:02 in the reference Wuhan variant ceased to be tight binders for the Indian (Delta) and the UK (Alpha) variants. In summary, we believe that T-CoV will help researchers and clinicians to predict the susceptibility of individuals with different HLA genotypes to infection with variants of SARS-CoV-2 and/or forecast its severity.


2021 ◽  
Vol 118 (28) ◽  
pp. e2104242118
Author(s):  
Lu Deng ◽  
Nancy Hernandez ◽  
Lilin Zhong ◽  
David D. Holcomb ◽  
Hailing Yan ◽  
...  

Epitope III, a highly conserved amino acid motif of 524APTYSW529 on the hepatitis C virus (HCV) E2 glycoprotein, resides in the critical loop that binds to the host receptor CD81, thus making it one of the most important antibody targets for blocking HCV infections. Here, we have determined the X-ray crystal structure of epitope III at a 2.0-Å resolution when it was captured by a site-specific neutralizing antibody, monoclonal antibody 1H8 (mAb1H8). The snapshot of this complex revealed that epitope III has a relatively rigid structure when confined in the binding grooves of mAb1H8, which confers the residue specificity at both ends of the epitope. Such a high shape complementarity is reminiscent of the “lock and key” mode of action, which is reinforced by the incompatibility of an antibody binding with an epitope bearing specific mutations. By subtly positioning the side chains on the three residues of Tyr527, Ser528, and Trp529 while preserving the spatial rigidity of the rest, epitope III in this cocrystal complex adopts a unique conformation that is different from previously described E2 structures. With further analyses of molecular docking and phage display–based peptide interactions, we recognized that it is the arrangements of two separate sets of residues within epitope III that create these discrete conformations for the epitope to interact selectively with either mAb1H8 or CD81. These observations thus raise the possibility that local epitope III conformational dynamics, in conjunction with sequence variations, may act as a regulatory mechanism to coordinate “mAb1H8-like” antibody-mediated immune defenses with CD81-initiated HCV infections.


2021 ◽  
Author(s):  
Joon-Sang Park

Protein-peptide interactions are of great interest to the research community not only because they serve as mediators in many protein-protein interactions but also because of the increasing demand for peptide-based pharmaceutical products. Protein-peptide docking is a major tool for studying protein-peptide interactions, and several docking methods are currently available. Among various protein-peptide docking algorithms, template-based approaches, which utilize known protein-peptide complexes or templates to predict a new one, have been shown to yield more reliable results than template-free methods in recent comparative research. To obtain reliable results with a template-based docking method, the template database must be comprehensive enough; that is, there must be similar templates of protein-peptide complexes to the protein and peptide being investigated. Thus, the template database must be updated to leverage recent advances in structural biology. However, the template database distributed with GalaxyPepDock, one of the most widely used peptide docking programs, is outdated, limiting the prediction quality of the method. Here, we present an up-to-date protein-peptide complex database called YAPP-CD, which can be directly plugged into the GalaxyPepDock binary package to improve GalaxyPepDock's prediction quality by drawing on recent discoveries in structural biology. Experimental results show that YAPP-CD significantly improves GalaxyPepDock's prediction quality, e.g., the average Ligand/Interface RMSD of a benchmark set is reduced from 7.60 A/3.62 A to 3.47 A/1.71 A.


2021 ◽  
Vol 181 ◽  
pp. 769-777
Author(s):  
Willy Smeralda ◽  
Marc Since ◽  
Julien Cardin ◽  
Sophie Corvaisier ◽  
Sophie Lecomte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document