Evaluation of mast cell activation (tryptase) in two patients suffering from drug-induced hypotensoid reactions

1991 ◽  
Vol 33 (1-2) ◽  
pp. 218-220 ◽  
Author(s):  
P. Matsson ◽  
I. Enander ◽  
A. -S. Andersson ◽  
J. Nystrand ◽  
L. Schwartz ◽  
...  
F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 196 ◽  
Author(s):  
Hwan Soo Kim ◽  
Yu Kawakami ◽  
Kazumi Kasakura ◽  
Toshiaki Kawakami

Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or de novo–synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.


2018 ◽  
Vol 315 (3) ◽  
pp. E357-E366 ◽  
Author(s):  
Shalini Jain ◽  
Anna Panyutin ◽  
Naili Liu ◽  
Cuiying Xiao ◽  
Ramón A. Piñol ◽  
...  

Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in KitW-sh/W-sh mice, which lack mast cells, demonstrating that mast cells are required. MRGPRB2 is a receptor that detects many cationic molecules and activates mast cells in an antigen-independent manner. In vitro, MTII stimulated mast cells by both MRGPRB2-dependent and -independent mechanisms, and MTII-induced hypothermia was intact in MRGPRB2-null mice. Confirming that MTII activated mast cells, MTII treatment increased plasma histamine levels in both wild-type and MRGPRB2-null, but not in KitW-sh/W-sh, mice. The released histamine produced hypothermia via histamine H1 receptors because either a selective antagonist, pyrilamine, or ablation of H1 receptors greatly diminished the hypothermia. Other drugs, including compound 48/80, a commonly used mast cell activator, also produced hypothermia by both mast cell-dependent and -independent mechanisms. These results suggest that mast cell activation should be considered when investigating the mechanism of drug-induced hypothermia in mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Graham A. Mackay ◽  
Nithya A. Fernandopulle ◽  
Jie Ding ◽  
Jeremy McComish ◽  
Paul F. Soeding

Acute anaphylaxis to small molecule drugs is largely considered to be antibody-mediated with immunogloblin E (IgE) and mast cell activation being key. More recently, a role for drug-reactive immunoglobulin G (IgG) with neutrophil activation has also been suggested, at least in reactions to neuromuscular blocking agents (NMBAs). However, the mast cell receptor MRGPRX2 has also been highlighted as a possible triggering mechanism in acute anaphylaxis to many clinically used drugs. Significantly, MRGPRX2 activation is not dependent upon the presence of drug-recognising antibody. Given the reasonable assumption that MRGPRX2 is expressed in all individuals, the corollary of this is that in theory, anybody could respond detrimentally to triggering drugs (recently suggested to be around 20% of a drug-like compound library). But this clearly is not the case, as the incidence of acute drug-induced anaphylaxis is very low. In this mini-review we consider antibody-dependent and -independent mechanisms of mast cell activation by small molecule drugs with a focus on the MRGPRX2 pathway. Moreover, as a juxtaposition to these adverse drug actions, we consider how increased understanding of the role of MRGPRX2 in anaphylaxis is important for future drug development and can complement exploration of this receptor as a drug target in broader clinical settings.


2021 ◽  
pp. 135910532110145
Author(s):  
Jennifer Nicoloro SantaBarbara ◽  
Marci Lobel

Individuals with Mast Cell Activation Syndrome (MCAS), a rare chronic disease, experience unpredictable physical symptoms and diagnostic challenges resulting in poor emotional states. The prevalence and correlates of depressive symptoms were examined among 125 participants who completed the CES-D and relevant instruments. The majority reported a clinically-significant level of depression which was especially common among younger participants and those who reported greater loneliness or more disease-specific stressors. Greater magnitude of depressive symptoms was associated with greater illness intrusiveness, less social support, and lower optimism. Results highlight the value of interventions targeting loneliness and stressors unique to this population.


Sign in / Sign up

Export Citation Format

Share Document