Segmented filamentous bacteria in the rodent small intestine: Their colonization of growing animals and possible role in host resistance toSalmonella

1982 ◽  
Vol 8 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Christian D. Garland ◽  
Adrian Lee ◽  
Melvyn R. Dickson
1998 ◽  
Vol 44 (12) ◽  
pp. 1177-1182 ◽  
Author(s):  
J Snel ◽  
C C Hermsen ◽  
H J Smits ◽  
N A Bos ◽  
WMC Eling ◽  
...  

Unlike most other indigenous bacteria, segmented filamentous bacteria (SFB) are potent activators of the mucosal immune system. SFB are strongly anchored to the epithelial cells of the small intestine where they have a preference for mucosal lymphoid epithelium. Since SFB are only present in high numbers shortly after weaning, it was investigated whether an SFB-induced immune reaction results in the removal of these bacteria from the small intestine. A correlation was found between age and colonization levels in the small intestines of SFB monoassociated Swiss mice. Five-week-old athymic BALB/c (nu/nu) mice showed lower colonization levels than their heterozygous littermates, but the opposite was found at the age of 12 weeks. However, SFB inoculation of germfree Swiss mice resulted in higher colonization levels in 5-week-old mice when compared with 4-month-old mice. We conclude that SFB colonization levels in the small intestine are likely influenced by the activity of the mucosal immune system. However, an additional age-dependent factor that modulates SFB colonization levels cannot be excluded.Key words: segmented filamentous bacteria, small intestine, gut-associated lymphoid tissue.


1991 ◽  
Vol 4 (3) ◽  
Author(s):  
H. L. B. M. Klaasen ◽  
J. P. Koopman ◽  
M. E. Van Den Brink ◽  
P. M. Scholten ◽  
M. H. Bakker ◽  
...  

1991 ◽  
Vol 4 (1) ◽  
pp. 47-51 ◽  
Author(s):  
H. L. B. M. Klaasen ◽  
J. P. Koopman ◽  
M. E. Van Den Brink ◽  
P. M. Scholten ◽  
A. C. Beynen

1999 ◽  
Vol 67 (7) ◽  
pp. 3504-3511 ◽  
Author(s):  
Yoshinori Umesaki ◽  
Hiromi Setoyama ◽  
Satoshi Matsumoto ◽  
Akemi Imaoka ◽  
Kikuji Itoh

ABSTRACT The presence of microflora in the digestive tract promotes the development of the intestinal immune system. In this study, to evaluate the roles of two types of indigenous microbe, segmented filamentous bacteria (SFB) and clostridia, whose habitats are the small and large intestines, respectively, in this immunological development, we analyzed three kinds of gnotobiotic mice contaminated with SFB, clostridia, and both SFB and clostridia, respectively, in comparison with germfree (GF) or conventionalized (Cvd) mice associated with specific-pathogen-free flora. In the small intestine, the number of αβ T-cell receptor-bearing intraepithelial lymphocytes (αβIEL) increased in SFB-associated mice (SFB-mice) but not in clostridium-associated mice (Clost-mice). There was no great difference in Vβ usage among GF mice, Cvd mice, and these gnotobiotic mice, although the association with SFB decreased the proportion of Vβ6+ cells in CD8β− subsets to some extent, compared to that in GF mice. The expression of major histocompatibility complex class II molecules on the epithelial cells was observed in SFB-mice but not in Clost-mice. On the other hand, in the large intestine, the ratio of the number of CD4−CD8+ cells to that of CD4+ CD8−cells in αβIEL increased in Clost-mice but not in SFB-mice. On association with both SFB and clostridia, the numbers and phenotypes of IEL in the small and large intestines changed to become similar to those in Cvd mice. In particular, the ratio of the number of CD8αβ+ cells to that of CD8αα+ cells in αβIEL, unusually elevated in the small intestines of SFB-mice, decreased to the level in Cvd mice on contamination with both SFB and clostridia. The number of immunoglobulin A (IgA)-producing cells in the lamina propria was more elevated in SFB-mice than in Clost-mice, not only in the ileum but also in the colon. The number of IgA-producing cells in the colons of Clost-mice was a little increased compared to that in GF mice. Taken together, SFB and clostridia promoted the development of both IEL and IgA-producing cells in the small intestine and that of only IEL in the large intestine, respectively, suggesting the occurrence of compartmentalization of the immunological responses to the indigenous bacteria between the small and large intestines.


2001 ◽  
Vol 69 (6) ◽  
pp. 3611-3617 ◽  
Author(s):  
Han-Qing Jiang ◽  
Nicolaas A. Bos ◽  
John J. Cebra

ABSTRACT As a member of the indigenous gut mucosal microbiota, segmented filamentous bacteria (SFB) colonize the guts of a variety of vertebrates and invertebrates. They are potent microbial stimuli of the gut mucosal immune system. In the small intestines of mice and rats, it has been observed that SFB are absent during the suckling period and appear in high numbers shortly after weaning, then quickly retreat to the cecum and large intestine. In this study, we explored whether this microecological phenomenon resulted from the interaction between SFB and the passively acquired maternal mucosal immunity and/or the actively acquired mucosal immunity. We set up a mouse model by reciprocal crossings and backcrossings of SFB-monoassociated, formerly germ-free, immunocompetent (+/+) BALB/c mice and immunodeficient (scid/scid) mice to produce pups which are either immunocompetent (scid/+) or immunodeficient (scid/scid) and are born either to immunocompetent (scid/+) mothers or to immunodeficient (scid/scid) mothers. We monitored the number of SFB on the mucosa of the small intestine in the four different groups of mice after birth, as well as the level of passively acquired antibodies, the active gut mucosal immune responses, and immunoglobulin A (IgA) coating of SFB in the gut. The results showed that, irrespective of whether the pups were scid/scid or scid/+, SFB could be found earlier on the mucosa of the small intestine in pups born to scid/scid mothers, appearing from day 13 and rapidly reaching a climax around weaning time on day 28, compared to the significantly delayed colonization in the pups of scid/+ mothers, starting from day 16 and peaking around days 28 to 32. After the climax, SFB quickly declined to very low levels in the small intestines of scid/+ pups of either scid/scid mothers or scid/+ mothers, whereas they remained at high levels in scid/scid pups at least until day 70, the last observation time in this study. The dynamic changes in SFB colonization of the small intestines of the different groups of pups may be related to the dynamic changes in the levels of SFB coated with secretory IgA (sIgA), which resulted from the significantly different levels of sIgA obtained from the mothers' milk during the suckling period and, later, of self-produced sIgA in the small intestine. Nevertheless, it is evident that the timing, localization, and persistence of colonization of the neonatal gut by SFB depends on the immune status of both mothers and pups.


1991 ◽  
Vol 4 (3) ◽  
pp. 187-189 ◽  
Author(s):  
H. L. B. M. Klaasen ◽  
J. P. Koopman ◽  
M. E. Van Den Brink ◽  
P. M. Scholten ◽  
M. H. Bakker ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Linda A. Oemcke ◽  
Rachel C. Anderson ◽  
Eric Altermann ◽  
Nicole C. Roy ◽  
Warren C. McNabb

The microbiological, physical, chemical, and immunological barriers of the gastrointestinal tract (GIT) begin developing in utero and finish maturing postnatally. Maturation of these barriers is essential for the proper functioning of the GIT. Maturation, particularly of the immunological barrier, involves stimulation by bacteria. Segmented filamentous bacteria (SFB) which are anaerobic, spore-forming commensals have been linked to immune activation. The presence and changes in SFB abundance have been positively correlated to immune markers (cytokines and immunoglobulins) in the rat ileum and stool samples, pre- and post-weaning. The abundance of SFB in infant stool increases from 6 months, peaks around 12 months and plateaus 25 months post-weaning. Changes in SFB abundance at these times correlate positively and negatively with the production of interleukin 17 (IL 17) and immunoglobulin A (IgA), respectively, indicating involvement in immune function and maturation. Additionally, the peak in SFB abundance when a human milk diet was complemented by solid foods hints at a diet effect. SFB genome analysis revealed enzymes involved in metabolic pathways for survival, growth and development, host mucosal attachment and substrate acquisition. This narrative review discusses the current knowledge of SFB and their suggested effects on the small intestine immune system. Referencing the published genomes of rat and mouse SFB, the use of food substrates to modulate SFB abundance is proposed while considering their effects on other microbes. Changes in the immune response caused by the interaction of food substrate with SFB may provide insight into their role in infant immunological barrier maturation.


2019 ◽  
Author(s):  
Hans Jonsson ◽  
Luisa W. Hugerth ◽  
John Sundh ◽  
Anders F. Andersson

SummarySegmented filamentous bacteria (SFB) colonize the small intestine of a variety of animals in a host-specific manner. SFB are physically attached to the host’s intestinal epithelium and affect several functions related to the immune system, among them IgA production and T-cell maturation. Until now, no human-specific SFB genome had been described. Here, we report the metagenomic reconstruction of an SFB genome from a human ileostomy sample. Phylogenomic analysis clusters the genome with the SFB genomes from mouse, rat and turkey, but the genome is genetically distinct, displaying 65-71% average amino acid identity to the other genomes, and is tentatively unique for the human small intestine. By screening human faecal metagenomic datasets, we identified individuals carrying sequences identical to the new SFB-genome. We thus conclude that a unique SFB variant exists in humans and we foresee a renewed interest in the elucidation of SFB functionality in this environment.


Sign in / Sign up

Export Citation Format

Share Document