Monte carlo simulations of the two-dimensional two-component plasma on a line

1994 ◽  
Vol 74 (5-6) ◽  
pp. 1309-1319 ◽  
Author(s):  
G. Manificat ◽  
J. M. Caillol
1989 ◽  
Vol 22 (14) ◽  
pp. L705-L709 ◽  
Author(s):  
S Sakamoto ◽  
F Yonezawa ◽  
K Aoki ◽  
S Nose ◽  
M Hori

2017 ◽  
Vol 28 (08) ◽  
pp. 1750099
Author(s):  
F. W. S. Lima

We investigate the critical properties of the equilibrium and nonequilibrium two-dimensional (2D) systems on Solomon networks with both nearest and random neighbors. The equilibrium and nonequilibrium 2D systems studied here by Monte Carlo simulations are the Ising and Majority-vote 2D models, respectively. We calculate the critical points as well as the critical exponent ratios [Formula: see text], [Formula: see text], and [Formula: see text]. We find that numerically both systems present the same exponents on Solomon networks (2D) and are of different universality class than the regular 2D ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.


2008 ◽  
Vol 8 (2) ◽  
pp. 7289-7313 ◽  
Author(s):  
L. Alfonso ◽  
G. B. Raga ◽  
D. Baumgardner

Abstract. The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method.~The stochastic algorithm of Gillespie (1976) for chemical reactions in the formulation proposed by Laurenzi et al. (2002) was used to simulate the kinetic behavior of the drop population. Within this framework species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by comparing the numerical with the analytical solutions found by Lushnikov (1975). Very good agreement was observed between the Monte Carlo simulations and the analytical solution. Simulation results are presented for bi-variate constant and hydrodynamic kernels. The algorithm can be easily extended to incorporate various properties of clouds such as including several crystal habits, different types of soluble CCN, particle charging and drop breakup.


2010 ◽  
Vol 96 (7) ◽  
pp. 071913 ◽  
Author(s):  
Shu Zheng ◽  
Wenguang Zhu ◽  
Y. F. Gao ◽  
G. M. Stocks ◽  
Zhenyu Zhang

Sign in / Sign up

Export Citation Format

Share Document