The physiological role of titin in striated muscle

1999 ◽  
Vol 138 (1) ◽  
pp. 57-96 ◽  
Author(s):  
R. Horowits
1993 ◽  
Vol 265 (1) ◽  
pp. H146-H151 ◽  
Author(s):  
R. L. Hester ◽  
A. Eraslan ◽  
Y. Saito

This study was designed to determine the physiological role of endothelium-dependent nitric oxide (EDNO) in the control of arteriolar diameter during rest and muscle stimulation. Diameters of first-, second-, and third-order arterioles in the superfused hamster cremaster muscle were measured before and throughout 1 min of field stimulation before and after inhibition of EDNO release. ENDO inhibition by intravenous N omega-nitro-L-arginine methyl ester (L-NAME) significantly attenuated the arteriolar vasodilation in response to 1 microM acetylcholine. First-order arterioles averaged 65 +/- 5 microns at rest and dilated to 86 +/- 6 microns during muscle stimulation (n = 9), second-order arterioles averaged 45 +/- 6 microns and dilated to 72 +/- 3 microns during muscle stimulation (n = 6), with third-order arterioles averaging 29 +/- 2 microns, and dilating to 53 +/- 3 microns during muscle stimulation (n = 7). EDNO inhibition significantly decreased both the resting diameter of first-order arterioles (57 +/- 4 microns) and functional dilation (68 +/- 3 microns; P <0.05). EDNO inhibition had no effect on the resting diameter of second-order arterioles (45 +/- 5 microns) yet significantly attenuated the functional dilation (64 +/- 4 microns; P < 0.05). EDNO inhibition had no effect on either the resting diameter of third-order arterioles (30 +/- 2 microns) or the functional dilation (49 +/- 2 microns).(ABSTRACT TRUNCATED AT 250 WORDS)


The identity of organelles storing intracellular calcium and the role of Ins(1,4,5) P 3 , in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of ‘caged’ compounds. The participation of G-protein(s) in the release of intracellular Ca 2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca 2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca 2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca 2+ . The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an α 1 -agonist, is 1.5 ± 0.26 s at 20 °C and 0.6 ± 0.18 s at 30 °C; the latency of contraction after photolytic release of Ins(1,4,5) P 3 from caged Ins(1,4,5) P 3 is 0.5 ± 0.12 s at 20 °C. The long latency of α 1 -adrenergic Ca 2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5) P 2 ) hydrolysis. GTPγS, a non-hydrolysable analogue of GTP, causes Ca 2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5) P 3 has an additive effect during the late, but not the early, phase of GTPγS action, and GTPγS can cause Ca 2+ release and contraction of permeabilized smooth muscles refractory to Ins(l,4,5) P 3 . These results suggest that activation of G protein (s) can release Ca 2+ by, at least, two G-proteinregulated mechanisms: one mediated by Ins(1,4,5) P 3 and the other Ins(1,4,5) P 3 - independent. The Ins(1,4,5) P 3 , 5-phosphatase activity and the slow time-course (seconds) of the contractile response toIns(1,4,5) P 3 released with laser flash photolysis from caged Ins(1,4,5) P 3 in frog skeletal muscle suggest that Ins(1,4,5) P 3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins Ins(1,4,5) P 3 -5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5) P 3 are compatible with a physiological role of Ins(1,4,5) P 3 as a messenger of pharmacomechanical coupling.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


2012 ◽  
Vol 30 (1) ◽  
pp. 100
Author(s):  
Wei HUANG ◽  
Shi-Bao ZHANG ◽  
Kun-Fang CAO

2018 ◽  
Vol 25 (23) ◽  
pp. 2627-2636 ◽  
Author(s):  
Vincenzo Calderone ◽  
Alma Martelli ◽  
Eugenia Piragine ◽  
Valentina Citi ◽  
Lara Testai ◽  
...  

In the last four decades, the several classes of diuretics, currently available for clinical use, have been the first line option for the therapy of widespread cardiovascular and non-cardiovascular diseases. Diuretic drugs generally exhibit an overall favourable risk/benefit balance. However, they are not devoid of side effects. In particular, all the classes of diuretics cause alteration of potassium homeostasis. <p> In recent years, understanding of the physiological role of the renal outer medullary potassium (ROMK) channels, has shown an intriguing pharmacological target for developing an innovative class of diuretic agents: the ROMK inhibitors. This novel class is expected to promote diuretic activity comparable to (or even higher than) that provided by the most effective drugs used in clinics (such as furosemide), with limited effects on potassium homeostasis. <p> In this review, the physio-pharmacological roles of ROMK channels in the renal function are reported, along with the most representative molecules which have been currently developed as ROMK inhibitors.


2021 ◽  
Vol 22 (11) ◽  
pp. 5575
Author(s):  
Agnieszka Markiewicz ◽  
Dawid Sigorski ◽  
Mateusz Markiewicz ◽  
Agnieszka Owczarczyk-Saczonek ◽  
Waldemar Placek

Caspase-14 is a unique member of the caspase family—a family of molecules participating in apoptosis. However, it does not affect this process but regulates another form of programmed cell death—cornification, which is characteristic of the epidermis. Therefore, it plays a crucial role in the formation of the skin barrier. The cell death cycle has been a subject of interest for researchers for decades, so a lot of research has been done to expand the understanding of caspase-14, its role in cell homeostasis and processes affecting its expression and activation. Conversely, it is also an interesting target for clinical researchers searching for its role in the physiology of healthy individuals and its pathophysiology in particular diseases. A summary was done in 2008 by Denecker et al., concentrating mostly on the biotechnological aspects of the molecule and its physiological role. However, a lot of new data have been reported, and some more practical and clinical research has been conducted since then. The majority of studies tackled the issue of clinical data presenting the role of caspase in the etiopathology of many diseases such as retinal dysfunctions, multiple malignancies, and skin conditions. This review summarizes the available knowledge on the molecular and, more interestingly, the clinical aspects of caspase-14. It also presents how theoretical science may pave the way for medical research. Methods: The authors analyzed publications available on PubMed until 21 March 2021, using the search term “caspase 14”.


Sign in / Sign up

Export Citation Format

Share Document