Immunoprecipitation of a pertussis toxin substrate of the Go family from rat islets of Langerhans

1992 ◽  
Vol 12 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Nicholas S. Berrow ◽  
Roger D. Hurst ◽  
Susan L. F. Chan ◽  
Noel G. Morgan

Rat islets express a pertussis toxin sensitive G-protein involved in receptor-mediated inhibition of insulin secretion. This has been assumed previously to represent “Gi” which couples inhibitory receptors to adenylate cyclase. Incubation of islet G-proteins with32P-NAD and pertussis toxin resulted in the labelling of a band of molecular weight 40,000. This band was very broad and did not allow resolution of individual components. Incubation of the radiolabelled proteins with an anti-Go antiserum resulted in specific immunoprecipitation of a32P-labelled band. These results demonstrate that the complement of pertussis toxin sensitive G-proteins in rat islets includes Go.

1992 ◽  
Vol 8 (2) ◽  
pp. 103-108 ◽  
Author(s):  
N. S. Berrow ◽  
G. Milligan ◽  
N. G. Morgan

ABSTRACT Inhibition of insulin secretion from rat islets of Langerhans is known to involve at least one pertussis toxin-sensitive guanine-nucleotide binding (G) protein. We have used antisera raised against unique antigenic determinants of different members of the family of pertussis toxin-sensitive G proteins to identify these proteins in rat islets. Antiserum SG1, which recognizes both Gi1 and Gi2, reacted with an islet protein having an approximate Mr of 40 000. Antiserum IlC (Gi1 specific) failed to recognize any islet proteins, suggesting that Gi2 is present in much greater amounts than Gi1. Indeed, Gi1 levels were below the detection limit of a sensitive immunogold/silver-staining method, indicating that it may be absent from the cells of rat islets. Two different antisera were used to identify Go-like G proteins in rat islet homogenates. Both antisera reacted with a protein band which, under appropriate conditions, could be resolved to reveal two separate proteins of Mr 39–40 000. Thus, at least two molecular forms of Go are present in rat islets. Subcellular fractionation indicated that all three G proteins identified in this study (Gi2 and two forms of Go) are localized to islet membranes. No immunoreactivity could be detected in the cytosolic fraction.


1977 ◽  
Vol 164 (2) ◽  
pp. 409-413 ◽  
Author(s):  
N A Ismail ◽  
E E S M El Denshary ◽  
W Montague

The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.


Diabetes ◽  
1980 ◽  
Vol 29 (1) ◽  
pp. 74-77 ◽  
Author(s):  
G. W. G. Sharp ◽  
D. E. Wiedenkeller ◽  
D. Kaelin ◽  
E. G. Siegel ◽  
C. B. Wollheim

Physiology ◽  
1993 ◽  
Vol 8 (2) ◽  
pp. 61-63
Author(s):  
H Deckmyn ◽  
C Van Geet ◽  
J Vermylen

Some subtypes of phosphatidylinositide-specific phospholipase C (PLC) are activated via pertussis toxin-sensitive or -insensitive G proteins. However, a G protein-dependent PLC inhibitory pathway also may exist. The resultant picture is of dual regulation of PLC, showing a close parallelism with the dual regulation of adenylate cyclase.


1992 ◽  
Vol 43 (8) ◽  
pp. 1859-1864 ◽  
Author(s):  
Mitsuaki Ohta ◽  
David Nelson ◽  
Jeanne M. Wilson ◽  
Martin D. Meglasson ◽  
Maria Erecińska

1985 ◽  
Vol 228 (3) ◽  
pp. 713-718 ◽  
Author(s):  
N G Morgan ◽  
G M Rumford ◽  
W Montague

Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document