Classical extensions of the ring of continuous functions and the corresponding preimages of a completely regular space

1995 ◽  
Vol 73 (1) ◽  
pp. 114-139 ◽  
Author(s):  
V. K. Zakharov

Author(s):  
V. V. Mykhaylyuk

A connection between the separability and the countable chain condition of spaces withL-property (a topological spaceXhasL-property if for every topological spaceY, separately continuous functionf:X×Y→ℝand open setI⊆ℝ,the setf−1(I)is anFσ-set) is studied. We show that every completely regular Baire space with theL-property and the countable chain condition is separable and constructs a nonseparable completely regular space with theL-property and the countable chain condition. This gives a negative answer to a question of M. Burke.



1975 ◽  
Vol 19 (3) ◽  
pp. 221-229 ◽  
Author(s):  
I. Tweddle

The main aim of the present note is to compare C(X) and C(υX), the spaces of real-valued continuous functions on a completely regular space X and its real 1–1 compactification υX, with regard to weak compactness and weak countable compactness. In a sense to be made precise below, it is shown that C(X) and C(υX) have the same absolutely convex weakly countably compact sets. In certain circumstances countable compactness may be replaced by compactness, in which case one obtains a nice representation of the Mackey completion of the dual space of C(X) (Theorems 5, 6, 7).



Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Ehsan Momtahan

Gelfand-Naimark's theorem states that every commutative -algebra is isomorphic to a complex valued algebra of continuous functions over a suitable compact space. We observe that for a completely regular space , is dense--separable if and only if is -cogenerated if and only if every family of maximal ideals of with zero intersection has a subfamily with cardinal number less than and zero intersection. This gives a simple characterization of -cogenerated commutative unital -algebras via their maximal ideals.



1989 ◽  
Vol 39 (3) ◽  
pp. 353-359 ◽  
Author(s):  
José Aguayo ◽  
José Sánchez

Let X be a completely regular space. We denote by Cb(X) the Banach space of all real-valued bounded continuous functions on X endowed with the supremum-norm.In this paper we prove some characterisations of weakly compact operators defined from Cb(X) into a Banach space E which are continuous with respect to fit, βt, βr and βσ introduced by Sentilles.We also prove that (Cb,(X), βi), i = t, τσ , has the Dunford-Pettis property.



1987 ◽  
Vol 29 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Liaqat Ali Khan

The fundamental work on approximation in weighted spaces of continuous functions on a completely regular space has been done mainly by Nachbin ([5], [6]). Further investigations have been made by Summers [10], Prolla ([7], [8]), and other authors (see the monograph [8] for more references). These authors considered functions with range contained in the scalar field or a locally convex topological vector space. In the present paper we prove some approximation results without local convexity of the range space.





2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.



1960 ◽  
Vol 12 ◽  
pp. 353-362 ◽  
Author(s):  
F. W. Anderson

A problem which has generated considerable interest during the past couple of decades is that of characterizing abstractly systems of realvalued continuous functions with various algebraic or topological-algebraic structures. With few exceptions known characterizations are of systems of bounded continuous functions on compact or locally compact spaces. Only recently have characterizations been given of the systems C(X) of all realvalued continuous functions on an arbitrary completely regular space X (1). One of the main objects of this paper is to provide, by using certain special techniques, a characterization of C(X) for a particular class of (not necessarily compact) completely regular spaces.



1976 ◽  
Vol 19 (6) ◽  
pp. 505-508
Author(s):  
V. V. Pashenkov


2017 ◽  
Vol 68 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Volodymyr Maslyuchenko ◽  
Oksana Myronyk ◽  
Olha Filipchuk

Abstract We prove general theorems on quasi-continuity of mappings f : X1 × ⋯ × Xn → Z with values in a completely regular space Z. As consequences, we obtain results on joint continuity of separately continuous functions of several variables involving the previous results of several authors.



Sign in / Sign up

Export Citation Format

Share Document