Hypersonic flow on a flat plate. Experimental results and numerical modeling

1995 ◽  
Vol 36 (6) ◽  
pp. 848-854 ◽  
Author(s):  
V. N. Vetlutskii ◽  
A. A. Maslov ◽  
S. G. Mironov ◽  
T. V. Poplavskaya ◽  
A. N. Shiplyuk
2013 ◽  
Vol 543 ◽  
pp. 171-175
Author(s):  
Jose Andrés Somolinos ◽  
Rafael Morales ◽  
Carlos Morón ◽  
Alfonso Garcia

In the last years, many analyses from acoustic signal processing have been used for different applications. In most cases, these sensor systems are based on the determination of times of flight for signals from every transducer. This paper presents a flat plate generalization method for impact detection and location over linear links or bars-based structures. The use of three piezoelectric sensors allow to achieve the position and impact time while the use of additional sensors lets cover a larger area of detection and avoid wrong timing difference measurements. An experimental setup and some experimental results are briefly presented.


Author(s):  
James Julian ◽  
Harinaldi ◽  
Budiarso ◽  
Chin-Cheng Wang ◽  
Ming-Jyh Chern

This paper shows experimental results for velocity measurement in the boundary layer with the use of a flat plate model. The flat plate model is disrupted with a wire trip and the effect of the plasma actuator to alter the flow in the boundary layer is then observed. The purpose of this research is to characterize the performance of the plasma actuator in a no-flow condition and with the use of a 2 m/s flow and also to theoretically analyze the performance of actuator in the boundary layer namely, displacement thickness, momentum thickness, and energy thickness. This is all done to acquire a deeper understanding of the capabilities of plasma actuator as one of the alternative active flow control equipment and to increase the effect of aerodynamic drag reduction. One of the ways to decrease the aerodynamic drag is to manipulate the flow to have a low boundary layer thickness value in order to prevent an adverse pressure gradient from happening, which then may lead to the formation of a flow separation. From experimental results, it is known that plasma actuator could decrease the thickness of the boundary layer by 9 mm.


Poromechanics ◽  
2020 ◽  
pp. 457-462
Author(s):  
P. Papanastasiou ◽  
E.D. Nicholson ◽  
G. Goldsmith ◽  
J. Cook

2021 ◽  
Author(s):  
Kamyar Tanha

This thesis is focused on the performance of the two SDHW systems of the sustainable Archetype houses in Vaughan, Ontario with daily hot water consumption of 225 litres. The first system consists of a flat plate solar thermal collector in conjunction with a gas boiler and a DWHR. The second SDHW system consists of an evacuated tube collector, an electric tank and a DWHR. The experimental results showed that the DWHRs were capable of an annual heat recovery of 789 kWh. The flat plate and evacuated tube collectors had an annual thermal energy output of 2038 kWh and 1383 kWh. The systems were also modeled in TRNSYS and validated with the experimental results. The simulated results showed that Edmonton has the highest annual energy consumption of 3763.4 kWh and 2852.9 kWh by gas boiler and electric tank and that the solar thermal collectors and DWHRs are most beneficial in Edmonton.


2018 ◽  
Vol 7 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Ying Zhou ◽  
Hong Wu ◽  
Yulong Li ◽  
Yi Cai

Sign in / Sign up

Export Citation Format

Share Document