Experimental Investigation of Aerodynamic Interference Heat Transfer Around a Protuberance on a Flat Plate Subjected to Hypersonic Flow

Author(s):  
C. S. Kumar ◽  
K. P. J. Reddy
2013 ◽  
Vol 26 (4) ◽  
pp. 708-714
Author(s):  
Girish Oppattaiyamath ◽  
Nagarjuna Reddy ◽  
Satyapramod Jammy ◽  
Vinayak Kulkarni

1974 ◽  
Vol 96 (4) ◽  
pp. 455-458 ◽  
Author(s):  
L. E. Wiles ◽  
J. R. Welty

An experimental investigation of laminar natural convection heat transfer from a uniformly heated vertical cylinder immersed in an effectively infinite pool of mercury is described. A correlation was developed for the local Nusselt number as a function of local modified Grashof number for each cylinder. A single equation incorporating the diameter-to-length ratio was formulated that satisfied the data for all three cylinders. An expression derived by extrapolation of the results to zero curvature (the flat plate condition) was found to agree favorably with others’ work, both analytical and experimental. The influence of curvature upon the heat transfer was found to be small but significant. It was established that the effective thermal resistance through the boundary layer is less for a cylinder of finite curvature than for a flat plate. Consequently, local heat transfer coefficients for cylinders are larger than those for flat plates operating under identical conditions.


Author(s):  
S. Gokaltun ◽  
P. V. Skudarnov ◽  
C. X. Lin ◽  
Hugh Thornburg

In this paper, verification and validation analysis for laminar hypersonic flow fields is presented. The simulations include a Mach 8 flow of calorically perfect gas over a spherically blunted cone and a Mach 14 flow over a flat plate. Numerical results were obtained using the finite volume method on structured grids. The verification of the numerical solutions was performed by calculating the Grid Convergence Index (GCI) for both test cases. A set of three different grids is used to calculate the discretization uncertainty, where each grid was generated by doubling the number of cells in each direction of the coarser grid. The value of GCI allows calculating the observed order of accuracy of the numerical method for local values of surface pressure at various points and the net drag force for the blunted cone case and for the local heat transfer coefficient for the flat plate case. The error band was observed to be 2.4% for the surface pressure in the blunted cone problem and 0.5% for the heat transfer coefficient in the flat plate problem. Finally the numerical results were validated with experimental data using the local surface pressure measurements for the hypersonic cone and the local heat transfer coefficient measurements for the hypersonic flat plate.


2018 ◽  
Vol 24 (7) ◽  
pp. 19
Author(s):  
Maha Ali Hussein

An experimental investigation has been made to study the influence of using v-corrugated aluminum fin on heat transfer coefficient and heat dissipation in a heat sink. The geometry of fin is changed to investigate their performance. 27 circular perforations with 1 cm diameter were made. The holes designed into two ways, inline arrangement and staggered in the corrugated edges arrangement. The experiments were done in enclosure space under natural convection. Three different voltages supplied to the heat sink to study their effects on the fins performance. All the studied cases are compared with v-corrugated smooth solid fin. Each experiment was repeated two times to reduce the error and the data recorded after reaching the steady state conditions. The results showed that the v-corrugated fin dissipate heat twice and triple times than flat plate mentioned in past research with the same dimension. Also, the inline perforated fin gave higher enhancement percentage than solid one by 15, 32 and 36% for 110, 150 and 200 V voltages supplied. Finally, the staggered perforation arrangement gave the higher enhancement percentage with 22, 42 and 45% for the same voltages supply.  


Sign in / Sign up

Export Citation Format

Share Document