Rapid monitoring of gaseous fission products released from nuclear power stations

1998 ◽  
Vol 233 (1-2) ◽  
pp. 281-284 ◽  
Author(s):  
C. Chung ◽  
C. Y. Chen ◽  
C. S. Lin ◽  
W. W. Yeh ◽  
C. J. Lee
MRS Bulletin ◽  
1994 ◽  
Vol 19 (12) ◽  
pp. 24-27 ◽  
Author(s):  
L.H. Johnson ◽  
L.O. Werme

The geologic disposal of spent nuclear fuel is currently under consideration in many countries. Most of this fuel is in the form of assemblies of zirconium-alloy-clad rods containing enriched (1–4% 235U) or natural (0.71% 235U) uranium oxide pellets. Approximately 135,000 Mg are presently in temporary storage facilities throughout the world in nations with commercial nuclear power stations.Safe geologic disposal of nuclear waste could be achieved using a combination of a natural barrier (the host rock of the repository) and engineered barriers, which would include a low-solubility waste form, long-lived containers, and clay- and cement-based barriers surrounding the waste containers and sealing the excavations.A requirement in evaluating the safety of disposal of nuclear waste is a knowledge of the kinetics and mechanism of dissolution of the waste form in groundwater and the solubility of the waste form constituents. In the case of spent nuclear fuel, this means developing an understanding of fuel microstructure, its impact on release of contained fission products, and the dissolution behavior of spent fuel and of UO2, the principal constituent of the fuel.


1983 ◽  
Author(s):  
Peter Doyle ◽  
Lothar Schroeder ◽  
Stephen Brewer
Keyword(s):  

2021 ◽  
pp. 1-18
Author(s):  
Ilina Cenevska

Abstract This case comment explores the relationship between two intertwined objectives – ensuring security of electricity supply and environmental protection – in the context of the judgment of the Court of Justice of the European Union in Inter-Environnement Wallonie ASBL and Bond Beter Leefmilieu Vlaanderen ASBL v. Conseil des ministres. The analysis focuses on the application of the Environmental Impact Assessment Directive and the Habitats Directive to the facts of the case, which concerns the extension by a ten-year period of the operation of two Belgian nuclear power stations (Doel 1 and Doel 2) as part of a national energy policy strategy to ensure the security of Belgium's electricity supply. The case comment also considers the legal and practical implications that arise as a result of employing the ‘security of electricity supply’ exemption to enable derogation from the requirements of the aforementioned Directives in circumstances where a Member State considers the security of its electricity supply to be under threat.


Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


Sign in / Sign up

Export Citation Format

Share Document