Macrophage-derived tumor necrosis factor and tumor-derived of leukemia inhibitory factor and interleukin-6: Possible cellular mechanisms of cancer cachexia

1996 ◽  
Vol 3 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Kevin G. Billingsley ◽  
Douglas L. Fraker ◽  
Gideon Strassmann ◽  
Caroline Loeser ◽  
Helen M. Fliot ◽  
...  
2008 ◽  
Vol 87 (6) ◽  
pp. 558-563 ◽  
Author(s):  
P. Palmqvist ◽  
P. Lundberg ◽  
I. Lundgren ◽  
L. Hänström ◽  
U.H. Lerner

Interleukin-6 (IL-6)-type cytokines are pleiotropic molecules capable of stimulating bone resorption and expressed by numerous cell types. In the present study, we tested the hypothesis that gingival fibroblasts may exert local osteotropic effects through production of IL-6 and related cytokines. IL-6-type cytokine expression and regulation by IL-1β and tumor necrosis factor-α (TNF-α) were studied in fibroblasts from the non-inflamed gingiva of healthy individuals. Constitutive mRNA expression of IL-6, IL-11, and leukemia inhibitory factor (LIF), but not of oncostatin M (OSM), was demonstrated, as was concentration-dependent stimulation of IL-6 and LIF mRNA and of protein by IL-1β and TNF-α. IL-11 mRNA and protein were concentration-dependently stimulated by IL-1β. The signaling pathway involved in IL-6 and LIF mRNA stimulation involved MAP kinases, but not NF-κB. The findings support the view that resident cells may influence the pathogenesis of periodontal disease through osteotropic IL-6-type cytokine production mediated by activation of MAP kinases. Abbreviations: IL-1α (interleukin-1α); IL-1β (interleukin-1β); IL-6 (interleukin-6); IL-11 (interleukin-11); LIF (leukemia inhibitory factor); OSM (oncostatin M); α(1)-coll. I (α(1)-collagen I); ALP (alkaline phosphatase); BMP-2 (bone morphogenetic protein-2); OC (osteocalcin); BSP (bone sialoprotein); TNFR I (tumor necrosis factor receptor I); TNFR II (tumor necrosis factor receptor II); IL-1R1 (interleukin-1 receptor 1); GAPDH (glyceraldehyde-3-phosphate dehydrogenase); RPL13A (ribosomal protein L13A); mRNA (messenger ribonucleic acid); cDNA (complementary deoxyribonucleic acid); PCR (polymerase chain-reaction); BCA (bicinchoninic acid); ELISA (enzyme-linked immunosorbent assay); α-MEM (α modification of Minimum Essential Medium); and FCS (fetal calf serum).


1992 ◽  
Vol 175 (4) ◽  
pp. 1139-1142 ◽  
Author(s):  
H R Alexander ◽  
G G Wong ◽  
G M Doherty ◽  
D J Venzon ◽  
D L Fraker ◽  
...  

Differentiation factor (D factor), also called leukemia inhibitory factor (LIF), is a glycoprotein that has been increasingly recognized to possess a wide range of physiological activities. We examined the possibility that the administration of D factor may confer beneficial effects and enhance host resistance against lethal endotoxemia. A single intravenous dose of recombinant human D factor completely protected C57/Bl6 mice from the lethal effect of Escherichia coli endotoxin (lipopolysaccharide [LPS]). The protective effects were dose dependent and observed when administered 2-24 h before LPS. Previous work has shown that interleukin 1 (IL-1) and tumor necrosis factor (TNF) also protect against a subsequent LPS challenge in a dose-dependent manner. When human D factor was combined with sub-protective doses of IL-1 beta or TNF-alpha, there was dramatic synergistic protection against a subsequent lethal LPS challenge.


Sign in / Sign up

Export Citation Format

Share Document