Soluble factor and cell-cell interaction in cytostasis induced by bone marrow cells

2000 ◽  
Vol 129 (6) ◽  
pp. 559-561 ◽  
Author(s):  
V. V. Senyukov ◽  
V. I. Seledtsov ◽  
O. V. Poveshchenko ◽  
V. Ya. Taraban ◽  
V. A. Kozlov
Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420 ◽  
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Abstract Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


1970 ◽  
Vol 131 (6) ◽  
pp. 1109-1120 ◽  
Author(s):  
E. B. Jacobson ◽  
Johanna L'age-Stehr ◽  
Leonard A. Herzenberg

Congenic mice, differing genetically only at the loci coding for immunoglobulin H chain (or Fc) structures, have been used to study cell interactions in the 7S (γG2a) antibody response to sheep erythrocytes (SRBC), as detected by the Jerne plaque-forming cell (PFC) method. The interaction between thymus and bone marrow cells was studied in adult thymectomized irradiated recipients, protected with syngeneic bone marrow and injected with thymus cells from the partner congenic strain. All of the γG2a PFC detected in the spleens of these mice were of bone marrow allotype. Adoptive secondary immune responses were then studied to determine whether a similar interaction between memory cells and bone marrow derived cells could be detected. Primed spleen cells from the partner congenic strain, or a subpopulation of these cells obtained by BSA density gradient fractionation, were injected into irradiated recipients alone, or together with syngeneic nonimmune spleen or bone marrow cells. All γG2a PFC detected in these experiments were of primed cell allotype. There was no evidence that antibody forming cell precursors in normal spleen or bone marrow participate in the adoptive secondary immune response detected 7 days after transfer of primed spleen cells. This was true regardless of whether the bone marrow cells were injected at the time of transfer, or were injected 1–2 wk earlier and allowed to become established in the spleens of recipient mice. Although no specific cell interaction was seen, bone marrow (and, to a lesser degree, normal spleen) cells were found to have a nonspecific enhancing effect on the adoptive secondary response when they were injected together with the primed spleen cells. This enhancement was not evident if the bone marrow cells were injected 1 or 2 wk prior to primed cell transfer.


Shock ◽  
2019 ◽  
Vol 51 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Clara B. Lorigados ◽  
Suely K.K. Ariga ◽  
Thais M. de Lima ◽  
Denise F. Barbeiro ◽  
Jose E. Krieger ◽  
...  

1968 ◽  
Vol 128 (4) ◽  
pp. 839-853 ◽  
Author(s):  
G. J. V. Nossal ◽  
A. Cunningham ◽  
G. F. Mitchell ◽  
J. F. A. P. Miller

Two new methods are described for making chromosomal spreads of single antibody-forming cells. The first depends on the controlled rupture of cells in small microdroplets through the use of a mild detergent and application of a mechanical stress on the cell. The second is a microadaptation of the conventional Ford technique. Both methods have a success rate of over 50%, though the quality of chromosomal spreads obtained is generally not as good as with conventional methods. These techniques have been applied to an analysis of cell to cell interaction in adoptive immune responses, using the full syngeneic transfer system provided by the use of CBA and CBA/T6T6 donor-recipient combinations. When neonatally thymectomized mice were restored to adequate immune responsiveness to sheep erythrocytes by injections of either thymus cells or thoracic duct lymphocytes, it was shown that all the actual dividing antibody-forming cells were not of donor but of host origin. When lethally irradiated mice were injected with chromosomally marked but syngeneic mixtures of thymus and bone marrow cells, a rather feeble adoptive immune response ensued; all the antibody-forming cells identified were of bone marrow origin. When mixtures of bone marrow cells and thoracic duct lymphocytes were used, immune restoration was much more effective, and over three-quarters of the antibody-forming mitotic figures carried the bone marrow donor chromosomal marker. The results were deemed to be consistent with the conclusions derived in the previous paper of this series, namely that thymus contains some, but a small number only of antigen-reactive cells (ARC), bone marrow contains antibody-forming cell precursors (AFCP) but no ARC, and thoracic duct lymph contains both ARC and AFCP with a probable predominance of the former. A vigorous immune response to sheep erythrocytes probably requires a collaboration between the two cell lineages, involving proliferation first of the ARC and then of the AFCP. The results stressed that the use of large numbers of pure thoracic duct lymphocytes in adoptive transfer work could lead to good adoptive immune responses, but that such results should not be construed as evidence against cell collaboration hypotheses. Some possible further uses of single cell chromosome techniques were briefly discussed.


Blood ◽  
1972 ◽  
Vol 40 (3) ◽  
pp. 394-399 ◽  
Author(s):  
J. S. Haskill ◽  
R. D. McKnight ◽  
P. R. Galbraith

Abstract Cell-cell interaction in vitro was studied by separating normal human bone marrow cells into fractions on the basis of their buoyant density in a linear gradient of bovine serum albumin and by assaying the colony forming ability of marrow fractions and combinations of marrow fractions in methylcellulose medium without an added extrinsic source of colony-stimulating factor. In this culture system unfractionated marrow cells seldom formed colonies, but colonies grew from the low-density fractions, suggesting that an inhibitor had been removed by cell fractionation. When cells from the low-density fraction were mixed with the cells from the middensity and highdensity fractions, stimulation and inhibition of colony size respectively were observed. These observations suggest that cell-cell interaction may play a role in regulation of granulopoiesis in vitro and suggests an approach to the investigation of granulopoiesis in disease.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


2006 ◽  
Vol 54 (S 1) ◽  
Author(s):  
C Stamm ◽  
YH Choi ◽  
A Liebold ◽  
HD Kleine ◽  
S Dunkelmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document